Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):939–951. doi: 10.1104/pp.112.3.939

Exogenous phytohormone-independent growth and regeneration of tobacco plants transgenic for the 6b gene of Agrobacterium tumefaciens AKE10.

H Wabiko 1, M Minemura 1
PMCID: PMC158021  PMID: 8938404

Abstract

The 6b gene of Agrobacterium tumefaciens AKE10 (AK-6b) induces crown gall tumors on certain plants but so far there have been no reports of the gene being able to induce tumors on culture medium. We cloned T-DNA segments containing the 6b gene but lacking the auxin and cytokinin biosynthesis genes from A. tumefaciens AKE10. Tobacco (Nicotiana tabacum) leaf discs infected with A. tumefaciens LBA4404 carrying the clones produced shooty calli on hormone-free Murashige-Skoog medium. The relevant T-DNA segment was integrated into plant DNA as determined by Southern hybridization. Some of these immature shoots spontaneously developed into mature shoots, of which several leaves displayed morphological abnormalities. When leaf discs of these mature plants were placed onto the same medium numerous shoots developed from the wounding sites, indicating that the transgenic plants possessed a high regenerative potential. Northern blot and reverse transcriptase-polymerase chain reaction analyses showed a large accumulation of the AK-6b transcripts in the shooty calli, but only a limited degree in mature plants, demonstrating that AK-6b expression is regulated in plants and essential for the early stages of regeneration. Cytokinin levels in the shooty calli were comparable to those in normal shoots, suggesting that shoot regeneration is not mediated by the modulation of cytokinin content.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W., Gordon M. P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5994–5998. doi: 10.1073/pnas.81.19.5994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canaday J., Gérad J. C., Crouzet P., Otten L. Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4. Mol Gen Genet. 1992 Nov;235(2-3):292–303. doi: 10.1007/BF00279373. [DOI] [PubMed] [Google Scholar]
  3. Chilton M. D., Drummond M. H., Merio D. J., Sciaky D., Montoya A. L., Gordon M. P., Nester E. W. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell. 1977 Jun;11(2):263–271. doi: 10.1016/0092-8674(77)90043-5. [DOI] [PubMed] [Google Scholar]
  4. Chilton M. D., Saiki R. K., Yadav N., Gordon M. P., Quetier F. T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4060–4064. doi: 10.1073/pnas.77.7.4060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung C. T., Miller R. H. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res. 1988 Apr 25;16(8):3580–3580. doi: 10.1093/nar/16.8.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dehio C., Schell J. Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5538–5542. doi: 10.1073/pnas.91.12.5538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drevet C., Brasileiro A. C., Jouanin L. Oncogene arrangement in a shooty strain of Agrobacterium tumefaciens. Plant Mol Biol. 1994 Apr;25(1):83–90. doi: 10.1007/BF00024200. [DOI] [PubMed] [Google Scholar]
  8. Gresshoff P. M., Skotnicki M. L., Rolfe B. G. Crown gall teratoma formation is plasmid and plant controlled. J Bacteriol. 1979 Feb;137(2):1020–1021. doi: 10.1128/jb.137.2.1020-1021.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hart C. M., Fischer B., Neuhaus J. M., Meins F., Jr Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet. 1992 Nov;235(2-3):179–188. doi: 10.1007/BF00279359. [DOI] [PubMed] [Google Scholar]
  10. MENAGE A., MOREL G. SUR LA PR'ESENCE D'OCTOPINE DANS LES TISSUS DE CROWN-GALL. C R Hebd Seances Acad Sci. 1964 Dec 21;259:4795–4796. [PubMed] [Google Scholar]
  11. Memelink J., Hoge J. H., Schilperoort R. A. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J. 1987 Dec 1;6(12):3579–3583. doi: 10.1002/j.1460-2075.1987.tb02688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SKOOG F., MILLER C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118–130. [PubMed] [Google Scholar]
  14. Salomon F., Deblaere R., Leemans J., Hernalsteens J. P., Van Montagu M., Schell J. Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J. 1984 Jan;3(1):141–146. doi: 10.1002/j.1460-2075.1984.tb01774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sano H., Youssefian S. A novel ras-related rgp1 gene encoding a GTP-binding protein has reduced expression in 5-azacytidine-induced dwarf rice. Mol Gen Genet. 1991 Aug;228(1-2):227–232. doi: 10.1007/BF00282470. [DOI] [PubMed] [Google Scholar]
  17. Shen W. J., Forde B. G. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res. 1989 Oct 25;17(20):8385–8385. doi: 10.1093/nar/17.20.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smart C. M., Scofield S. R., Bevan M. W., Dyer T. A. Delayed Leaf Senescence in Tobacco Plants Transformed with tmr, a Gene for Cytokinin Production in Agrobacterium. Plant Cell. 1991 Jul;3(7):647–656. doi: 10.1105/tpc.3.7.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spanier K., Schell J., Schreier P. H. A functional analysis of T-DNA gene 6b: the fine tuning of cytokinin effects on shoot development. Mol Gen Genet. 1989 Oct;219(1-2):209–216. doi: 10.1007/BF00261179. [DOI] [PubMed] [Google Scholar]
  20. Thomashow L. S., Reeves S., Thomashow M. F. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5071–5075. doi: 10.1073/pnas.81.16.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomashow M. F., Nutter R., Montoya A. L., Gordon M. P., Nester E. W. Integration and organization of Ti plasmid sequences in crown gall tumors. Cell. 1980 Mar;19(3):729–739. doi: 10.1016/s0092-8674(80)80049-3. [DOI] [PubMed] [Google Scholar]
  22. Tinland B., Fournier P., Heckel T., Otten L. Expression of a chimaeric heat-shock-inducible Agrobacterium 6b oncogene in Nicotiana rustica. Plant Mol Biol. 1992 Mar;18(5):921–930. doi: 10.1007/BF00019206. [DOI] [PubMed] [Google Scholar]
  23. Tinland B., Rohfritsch O., Michler P., Otten L. Agrobacterium tumefaciens T-DNA gene 6b stimulates rol-induced root formation, permits growth at high auxin concentrations and increases root size. Mol Gen Genet. 1990 Aug;223(1):1–10. doi: 10.1007/BF00315790. [DOI] [PubMed] [Google Scholar]
  24. Trione E. J., Banowetz G. M., Krygier B. B., Kathrein J. M., Sayavedra-Soto L. A quantitative fluorescence enzyme immunoassay for plant cytokinins. Anal Biochem. 1987 Apr;162(1):301–308. doi: 10.1016/0003-2697(87)90041-8. [DOI] [PubMed] [Google Scholar]
  25. Van Larebeke N., Engler G., Holsters M., Van den Elsacker S., Zaenen I., Schilperoort R. A., Schell J. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature. 1974 Nov 8;252(5479):169–170. doi: 10.1038/252169a0. [DOI] [PubMed] [Google Scholar]
  26. Wabiko H., Kagaya M., Sano H. Polymorphism of Nopaline-type T-DNAs from Agrobacterium tumefaciens. Plasmid. 1991 Jan;25(1):3–15. doi: 10.1016/0147-619x(91)90002-e. [DOI] [PubMed] [Google Scholar]
  27. Willmitzer L., Dhaese P., Schreier P. H., Schmalenbach W., Van Montagu M., Schell J. Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell. 1983 Apr;32(4):1045–1056. doi: 10.1016/0092-8674(83)90289-1. [DOI] [PubMed] [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  29. de Carvalho F., Gheysen G., Kushnir S., Van Montagu M., Inzé D., Castresana C. Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J. 1992 Jul;11(7):2595–2602. doi: 10.1002/j.1460-2075.1992.tb05324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES