Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):953–963. doi: 10.1104/pp.112.3.953

Lhcb Transcription Is Coordinated with Cell Size and Chlorophyll Accumulation (Studies on Fluorescence-Activated, Cell-Sorter-Purified Single Cells from Wild-Type and immutans Arabidopsis thaliana).

L Meehan 1, K Harkins 1, J Chory 1, S Rodermel 1
PMCID: PMC158022  PMID: 12226428

Abstract

To study the mechanisms that integrate pigment and chlorophyll a/b-binding apoprotein biosynthesis during light-harvesting complex II assembly, we have examined [beta]-glucuronidase (GUS) enzyme activities, chlorophyll contents, and cell sizes in fluorescence-activated, cell-sorting-separated single cells from transgenic Arabidopsis thaliana wild-type and immutans variegation mutant plants that express an Lhcb (photosystem II chlorophyll a/b-binding polypeptide gene)/GUS promoter fusion. We found that GUS activities are positively correlated with chlorophyll content and cell size in green cells from the control and immutans plants, indicating that Lhcb gene transcription is coordinated with cell size in this species. Compared with the control plants, however, chlorophyll production is enhanced in the green cells of immutans; this may represent part of a strategy to maximize photosynthesis in the green sectors to compensate for a lack of photosynthesis in the white sectors of the mutant. Lhcb transcription is significantly higher in pure-white cells of the transgenic immutans plants than in pure-white cells from norflurazon-treated, photooxidized A. thaliana leaves. This suggests that immutans partially uncouples Lhcb transcription from its normal dependence on chlorophyll accumulation and chloroplast development. We conclude that immutans may play a role in regulating Lhcb transcription, and may be a key component in the signal transduction pathways that control chloroplast biogenesis.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartley G. E., Viitanen P. V., Pecker I., Chamovitz D., Hirschberg J., Scolnik P. A. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6532–6536. doi: 10.1073/pnas.88.15.6532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boffey S. A., Ellis J. R., Selldén G., Leech R. M. Chloroplast Division and DNA Synthesis in Light-grown Wheat Leaves. Plant Physiol. 1979 Sep;64(3):502–505. doi: 10.1104/pp.64.3.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen Y., Yalovsky S., Nechushtai R. Integration and assembly of photosynthetic protein complexes in chloroplast thylakoid membranes. Biochim Biophys Acta. 1995 May 8;1241(1):1–30. doi: 10.1016/0304-4157(94)00012-3. [DOI] [PubMed] [Google Scholar]
  4. Flachmann R., Kühlbrandt W. Accumulation of plant antenna complexes is regulated by post-transcriptional mechanisms in tobacco. Plant Cell. 1995 Feb;7(2):149–160. doi: 10.1105/tpc.7.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galbraith D. W., Harkins K. R., Jefferson R. A. Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry. 1988 Jan;9(1):75–83. doi: 10.1002/cyto.990090112. [DOI] [PubMed] [Google Scholar]
  6. Galbraith D. W., Harkins K. R., Knapp S. Systemic Endopolyploidy in Arabidopsis thaliana. Plant Physiol. 1991 Jul;96(3):985–989. doi: 10.1104/pp.96.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galbraith D. W. Isolation and flow cytometric characterization of plant protoplasts. Methods Cell Biol. 1990;33:527–547. doi: 10.1016/s0091-679x(08)60552-x. [DOI] [PubMed] [Google Scholar]
  8. Gallagher T. F., Ellis R. J. Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J. 1982;1(12):1493–1498. doi: 10.1002/j.1460-2075.1982.tb01345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harkins K. R., Galbraith D. W. Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry. 1987 Jan;8(1):60–70. doi: 10.1002/cyto.990080110. [DOI] [PubMed] [Google Scholar]
  10. Harkins K. R., Jefferson R. A., Kavanagh T. A., Bevan M. W., Galbraith D. W. Expression of photosynthesis-related gene fusions is restricted by cell type in transgenic plants and in transfected protoplasts. Proc Natl Acad Sci U S A. 1990 Jan;87(2):816–820. doi: 10.1073/pnas.87.2.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang J., Struck F., Matzinger D. F., Levings C. S., 3rd Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory protein is associated with changes in mitochondrion number. Plant Cell. 1994 Mar;6(3):439–448. doi: 10.1105/tpc.6.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karlin-Neumann G. A., Sun L., Tobin E. M. Expression of Light-Harvesting Chlorophyll a/b-Protein Genes Is Phytochrome-Regulated in Etiolated Arabidopsis thaliana Seedlings. Plant Physiol. 1988 Dec;88(4):1323–1331. doi: 10.1104/pp.88.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Król M., Spangfort M. D., Huner N. P., Oquist G., Gustafsson P., Jansson S. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol. 1995 Mar;107(3):873–883. doi: 10.1104/pp.107.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuttkat A., Grimm R., Paulsen H. Light-harvesting chlorophyll a/b-binding protein inserted into isolated thylakoids binds pigments and is assembled into trimeric light-harvesting complex. Plant Physiol. 1995 Dec;109(4):1267–1276. doi: 10.1104/pp.109.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leary J. F., Todd P., Wood J. C., Jett J. H. Laser flow cytometric light scatter and fluorescence pulse width and pulse rise-time sizing of mammalian cells. J Histochem Cytochem. 1979 Jan;27(1):315–320. doi: 10.1177/27.1.374594. [DOI] [PubMed] [Google Scholar]
  17. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGrath J. M., Terzaghi W. B., Sridhar P., Cashmore A. R., Pichersky E. Sequence of the fourth and fifth Photosystem II type I chlorophyll a/b-binding protein genes of Arabidopsis thaliana and evidence for the presence of a full complement of the extended CAB gene family. Plant Mol Biol. 1992 Aug;19(5):725–733. doi: 10.1007/BF00027069. [DOI] [PubMed] [Google Scholar]
  19. Paulsen H., Finkenzeller B., Kühlein N. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem. 1993 Aug 1;215(3):809–816. doi: 10.1111/j.1432-1033.1993.tb18096.x. [DOI] [PubMed] [Google Scholar]
  20. Pecker I., Chamovitz D., Linden H., Sandmann G., Hirschberg J. A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4962–4966. doi: 10.1073/pnas.89.11.4962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Plumley G. F., Schmidt G. W. Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly. Plant Cell. 1995 Jun;7(6):689–704. doi: 10.1105/tpc.7.6.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Preiss S., Thornber J. P. Stability of the Apoproteins of Light-Harvesting Complex I and II during Biogenesis of Thylakoids in the Chlorophyll b-less Barley Mutant Chlorina f2. Plant Physiol. 1995 Mar;107(3):709–717. doi: 10.1104/pp.107.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pyke K. A., Leech R. M. Rapid Image Analysis Screening Procedure for Identifying Chloroplast Number Mutants in Mesophyll Cells of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1991 Aug;96(4):1193–1195. doi: 10.1104/pp.96.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pyke K. A., Rutherford S. M., Robertson E. J., Leech R. M. arc6, A Fertile Arabidopsis Mutant with Only Two Mesophyll Cell Chloroplasts. Plant Physiol. 1994 Nov;106(3):1169–1177. doi: 10.1104/pp.106.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rédei G. P. Somatic Instability Caused by a Cysteine-Sensitive Gene in Arabidopsis. Science. 1963 Feb 22;139(3556):767–769. doi: 10.1126/science.139.3556.767. [DOI] [PubMed] [Google Scholar]
  27. Susek R. E., Ausubel F. M., Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell. 1993 Sep 10;74(5):787–799. doi: 10.1016/0092-8674(93)90459-4. [DOI] [PubMed] [Google Scholar]
  28. Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wetzel C. M., Jiang C. Z., Meehan L. J., Voytas D. F., Rodermel S. R. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J. 1994 Aug;6(2):161–175. doi: 10.1046/j.1365-313x.1994.6020161.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES