Abstract
A recently isolated cDNA clone of tobacco (Nicotiana tabacum L.) lipoxygenase (LOX) was used to study LOX gene expression in tobacco cell-suspension cultures and intact plants in response to infection with Phytophthora parasitica nicotianae (Ppn). Southern blot analysis of tobacco DNA indicated that only a small number of LOX genes hybridize to this probe. These genes were not constitutively expressed to a detectable level in control cells and healthy plants. In contrast, a rapid and transient accumulation of transcripts occurred in cells and plants after treatment with elicitor and inoculation with zoospores of Ppn, respectively. In cell cultures LOX gene expression could also be induced by linolenic acid, a LOX substrate, and by methyl jasmonate, one of the products derived from the action of LOX on linolenic acid. In the infection assays, LOX gene expression and enzyme activity were observed earlier when the plants carried a resistance gene against the race of Ppn used for inoculation. The differential expression of LOX during the race-cultivar-specific interaction between tobacco and Ppn, as well as its regulation by elicitors and jasmonate, suggest a role of LOX in plant resistance and establishment of the defense status against this pathogen.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell E., Mullet J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 1993 Dec;103(4):1133–1137. doi: 10.1104/pp.103.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi D., Bostock R. M., Avdiushko S., Hildebrand D. F. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2329–2333. doi: 10.1073/pnas.91.6.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creelman R. A., Mullet J. E. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4114–4119. doi: 10.1073/pnas.92.10.4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croft KPC., Juttner F., Slusarenko A. J. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 1993 Jan;101(1):13–24. doi: 10.1104/pp.101.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eiben H. G., Slusarenko A. J. Complex spatial and temporal expression of lipoxygenase genes during Phaseolus vulgaris (L.) development. Plant J. 1994 Jan;5(1):123–135. doi: 10.1046/j.1365-313x.1994.5010123.x. [DOI] [PubMed] [Google Scholar]
- Farmer E. E. Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol. 1994 Dec;26(5):1423–1437. doi: 10.1007/BF00016483. [DOI] [PubMed] [Google Scholar]
- Farmer E. E., Ryan C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713–7716. doi: 10.1073/pnas.87.19.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Gardner H. W. Recent investigations into the lipoxygenase pathway of plants. Biochim Biophys Acta. 1991 Jul 30;1084(3):221–239. doi: 10.1016/0005-2760(91)90063-n. [DOI] [PubMed] [Google Scholar]
- Geerts A., Feltkamp D., Rosahl S. Expression of lipoxygenase in wounded tubers of Solanum tuberosum L. Plant Physiol. 1994 May;105(1):269–277. doi: 10.1104/pp.105.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimes H. D., Koetje D. S., Franceschi V. R. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol. 1992 Sep;100(1):433–443. doi: 10.1104/pp.100.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haffner M. H., Chin M. B., Lane B. G. Wheat embryo ribonucleates. XII. Formal characterization of terminal and penultimate nucleoside residues at the 5'-ends of "capped" RNA from imbibing wheat embryos. Can J Biochem. 1978 Jul;56(7):729–733. doi: 10.1139/o78-109. [DOI] [PubMed] [Google Scholar]
- Koch E., Meier B. M., Eiben H. G., Slusarenko A. A Lipoxygenase from Leaves of Tomato (Lycopersicon esculentum Mill.) Is Induced in Response to Plant Pathogenic Pseudomonads. Plant Physiol. 1992 Jun;99(2):571–576. doi: 10.1104/pp.99.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melan M. A., Nemhauser J. L., Peterman T. K. Structure and sequence of the Arabidopsis thaliana lipoxygenase 1 gene. Biochim Biophys Acta. 1994 Jan 20;1210(3):377–380. doi: 10.1016/0005-2760(94)90244-5. [DOI] [PubMed] [Google Scholar]
- Ohta H., Shida K., Peng Y. L., Furusawa I., Shishiyama J., Aibara S., Morita Y. A Lipoxygenase Pathway Is Activated in Rice after Infection with the Rice Blast Fungus Magnaporthe grisea. Plant Physiol. 1991 Sep;97(1):94–98. doi: 10.1104/pp.97.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng Y. L., Shirano Y., Ohta H., Hibino T., Tanaka K., Shibata D. A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus. J Biol Chem. 1994 Feb 4;269(5):3755–3761. [PubMed] [Google Scholar]
- Roy P., Roy S. K., Mitra A., Kulkarni A. P. Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim Biophys Acta. 1994 Sep 15;1214(2):171–179. doi: 10.1016/0005-2760(94)90041-8. [DOI] [PubMed] [Google Scholar]
- Vernooij B., Uknes S., Ward E., Ryals J. Salicylic acid as a signal molecule in plant-pathogen interactions. Curr Opin Cell Biol. 1994 Apr;6(2):275–279. doi: 10.1016/0955-0674(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Vick B. A., Zimmerman D. C. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984 Jun;75(2):458–461. doi: 10.1104/pp.75.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]