Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1005–1014. doi: 10.1104/pp.112.3.1005

Interactions between Photosynthesis and Respiration in the Green Alga Chlamydomonas reinhardtii (Characterization of Light-Enhanced Dark Respiration).

X Xue 1, D A Gauthier 1, D H Turpin 1, H G Weger 1
PMCID: PMC158027  PMID: 12226429

Abstract

The rate of respiratory O2 consumption by Chlamydomonas reinhardtii cell suspensions was greater after a period of photosynthesis than in the preceding dark period. This "light-enhanced dark respiration" (LEDR) was a function of both the duration of illumination and the photon fluence rate. Mass spectrometric measurements of gas exchange indicated that the rate of gross respiratory O2 consumption increased during photosynthesis, whereas gross respiratory CO2 production decreased in a photon fluence rate-dependent manner. The rate of postillumination O2 consumption provided a good measure of the O2 consumption rate in the light. LEDR was substantially decreased by the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea or glycolaldehyde, suggesting that LEDR was photosynthesis-dependent. The onset of photosynthesis resulted in an increase in the cellular levels of phosphoglycerate, malate, and phosphoenolpyruvate, and a decrease in whole-cell ATP and citrate levels; all of these changes were rapidly reversed upon darkening. These results are consistent with a decrease in the rate of respiratory carbon flow during photosynthesis, whereas the increase in respiratory O2 consumption during photosynthesis may be mediated by the export of photogenerated reductant from the chloroplast. We suggest that photosynthesis interacts with respiration at more than one level, simultaneously decreasing the rate of respiratory carbon flow while increasing the rate of respiratory O2 consumption.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azcón-Bieto J., Lambers H., Day D. A. Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiol. 1983 Jul;72(3):598–603. doi: 10.1104/pp.72.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carnal N. W., Black C. C. Phosphofructokinase activities in photosynthetic organisms : the occurrence of pyrophosphate-dependent 6-phosphofructokinase in plants and algae. Plant Physiol. 1983 Jan;71(1):150–155. doi: 10.1104/pp.71.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farr T. J., Huppe H. C., Turpin D. H. Coordination of Chloroplastic Metabolism in N-Limited Chlamydomonas reinhardtii by Redox Modulation (I. The Activation of Phosphoribulosekinase and Glucose-6-Phosphate Dehydrogenase Is Relative to the Photosynthetic Supply of Electrons). Plant Physiol. 1994 Aug;105(4):1037–1042. doi: 10.1104/pp.105.4.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerhardt R., Stitt M., Heldt H. W. Subcellular Metabolite Levels in Spinach Leaves : Regulation of Sucrose Synthesis during Diurnal Alterations in Photosynthetic Partitioning. Plant Physiol. 1987 Feb;83(2):399–407. doi: 10.1104/pp.83.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HUGHES E. O., GORHAM P. R., ZEHNDER A. Toxicity of a unialgal culture of Microcystis aeruginosa. Can J Microbiol. 1958 Jun;4(3):225–236. doi: 10.1139/m58-024. [DOI] [PubMed] [Google Scholar]
  6. Hampp R., Goller M., Ziegler H. Adenylate Levels, Energy Charge, and Phosphorylation Potential during Dark-Light and Light-Dark Transition in Chloroplasts, Mitochondria, and Cytosol of Mesophyll Protoplasts from Avena sativa L. Plant Physiol. 1982 Feb;69(2):448–455. doi: 10.1104/pp.69.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heineke D., Riens B., Grosse H., Hoferichter P., Peter U., Flügge U. I., Heldt H. W. Redox Transfer across the Inner Chloroplast Envelope Membrane. Plant Physiol. 1991 Apr;95(4):1131–1137. doi: 10.1104/pp.95.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huppe H. C., Buchanan B. B. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents. Z Naturforsch C. 1989 May-Jun;44(5-6):487–494. doi: 10.1515/znc-1989-5-624. [DOI] [PubMed] [Google Scholar]
  9. Klein U., Chen C., Gibbs M. Photosynthetic Properties of Chloroplasts from Chlamydomonas reinhardii. Plant Physiol. 1983 Jun;72(2):488–491. doi: 10.1104/pp.72.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klein U. Intracellular Carbon Partitioning in Chlamydomonas reinhardtii. Plant Physiol. 1987 Dec;85(4):892–897. doi: 10.1104/pp.85.4.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kombrink E., Wöber G. Chloroplast phosphofructokinase in the green alga, Dunaliella marina: partial purification and kinetic and regulatory properties. Arch Biochem Biophys. 1982 Feb;213(2):602–619. doi: 10.1016/0003-9861(82)90590-2. [DOI] [PubMed] [Google Scholar]
  12. Miller A. G., Espie G. S., Canvin D. T. Active Transport of Inorganic Carbon Increases the Rate of O(2) Photoreduction by the Cyanobacterium Synechococcus UTEX 625. Plant Physiol. 1988 Sep;88(1):6–9. doi: 10.1104/pp.88.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peltier G., Thibault P. O(2) uptake in the light in chlamydomonas: evidence for persistent mitochondrial respiration. Plant Physiol. 1985 Sep;79(1):225–230. doi: 10.1104/pp.79.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Radmer R. J., Kok B. Photoreduction of O(2) Primes and Replaces CO(2) Assimilation. Plant Physiol. 1976 Sep;58(3):336–340. doi: 10.1104/pp.58.3.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reddy M. M., Vani T., Raghavendra A. S. Light-enhanced dark respiration in mesophyll protoplasts from leaves of pea. Plant Physiol. 1991 Aug;96(4):1368–1371. doi: 10.1104/pp.96.4.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Santarius K. A., Heber U. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta. 1965 May 25;102(1):39–54. doi: 10.1016/0926-6585(65)90201-3. [DOI] [PubMed] [Google Scholar]
  17. Schuller K. A., Plaxton W. C., Turpin D. H. Regulation of Phosphoenolpyruvate Carboxylase from the Green Alga Selenastrum minutum: Properties Associated with Replenishment of Tricarboxylic Acid Cycle Intermediates during Ammonium Assimilation. Plant Physiol. 1990 Aug;93(4):1303–1311. doi: 10.1104/pp.93.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stitt M., Lilley R. M., Heldt H. W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol. 1982 Oct;70(4):971–977. doi: 10.1104/pp.70.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sueltemeyer D. F., Klug K., Fock H. P. Effect of Photon Fluence Rate on Oxygen Evolution and Uptake by Chlamydomonas reinhardtii Suspensions Grown in Ambient and CO(2)-Enriched Air. Plant Physiol. 1986 Jun;81(2):372–375. doi: 10.1104/pp.81.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weger H. G., Birch D. G., Elrifi I. R., Turpin D. H. Ammonium Assimilation Requires Mitochondrial Respiration in the Light : A Study with the Green Alga Selenastrum minutum. Plant Physiol. 1988 Mar;86(3):688–692. doi: 10.1104/pp.86.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES