Abstract
Metabolic control of cytokinin oxidase by its substrate was investigated in planta using wild-type (WT) and conditionally ipt gene-expressing transgenic (IPT) tobacco (Nicotiana tabacum L.) callus cultures and plants. The derepression of the tetracycline (Tc)-dependent ipt gene transcription was followed by a progressive, more than 100-fold increase in total cytokinin content in IPT calli. The activity of cytokinin oxidase extracted from these calli began to increase 16 to 20 h after gene derepression, and after 13 d it was 10-fold higher than from Tc-treated WT calli. An increase in cytokinin oxidase activity, as a consequence of elevated cytokinin levels, was found in detached leaves (8-fold after 4 d) and in roots of intact plants (4-fold after 3 d). The partially purified cytokinin oxidase from WT, repressed IPT, and Tc-derepressed IPT tobacco calli exhibited similar characteristics. It had the same broad pH optimum (pH 6.5-8.5), its activity in vitro was enhanced 4-fold in the presence of copper-imidazole, and the apparent Km(N6-[[delta]2iso-pentenyl]adenine) values were in the range of 3.1 to 4.9 [mu]M. The increase in cytokinin oxidase activity in cytokinin-overproducing tissue was associated with the accumulation of a glycosylated form of the enzyme. The present data indicate the substrate induction of cytokinin oxidase activity in different tobacco tissues, which may contribute to hormone homeostasis.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIELESKI R. L. THE PROBLEM OF HALTING ENZYME ACTION WHEN EXTRACTING PLANT TISSUES. Anal Biochem. 1964 Dec;9:431–442. doi: 10.1016/0003-2697(64)90204-0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brzobohatý B., Moore I., Palme K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol. 1994 Dec;26(5):1483–1497. doi: 10.1007/BF00016486. [DOI] [PubMed] [Google Scholar]
- Chatfield J. M., Armstrong D. J. Cytokinin Oxidase from Phaseolus vulgaris Callus Tissues : Enhanced in Vitro Activity of the Enzyme in the Presence of Copper-Imidazole Complexes. Plant Physiol. 1987 Jul;84(3):726–731. doi: 10.1104/pp.84.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatfield J. M., Armstrong D. J. Regulation of Cytokinin Oxidase Activity in Callus Tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol. 1986 Feb;80(2):493–499. doi: 10.1104/pp.80.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatz C., Frohberg C., Wendenburg R. Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 1992 May;2(3):397–404. doi: 10.1111/j.1365-313x.1992.00397.x. [DOI] [PubMed] [Google Scholar]
- Kaminek M., Armstrong D. J. Genotypic variation in cytokinin oxidase from phaseolus callus cultures. Plant Physiol. 1990 Aug;93(4):1530–1538. doi: 10.1104/pp.93.4.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKOOG F., MILLER C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118–130. [PubMed] [Google Scholar]
- Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]