Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1045–1054. doi: 10.1104/pp.112.3.1045

Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts.

C Lichtlé 1, F Garnier 1, C Bernard 1, G Zabulon 1, A Spilar 1, J C Thomas 1, A L Etienne 1
PMCID: PMC158031  PMID: 8938410

Abstract

In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastid-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastid-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apt K. E., Grossman A. R. Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Plant Mol Biol. 1993 Jan;21(1):27–38. doi: 10.1007/BF00039615. [DOI] [PubMed] [Google Scholar]
  2. Apt K. E., Hoffman N. E., Grossman A. R. The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem. 1993 Aug 5;268(22):16208–16215. [PubMed] [Google Scholar]
  3. Bernard C., Thomas J. C., Mazel D., Mousseau A., Castets A. M., Tandeau de Marsac N., Dubacq J. P. Characterization of the genes encoding phycoerythrin in the red alga Rhodella violacea: evidence for a splitting of the rpeB gene by an intron. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9564–9568. doi: 10.1073/pnas.89.20.9564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen H. C., Stern D. B. Specific binding of chloroplast proteins in vitro to the 3' untranslated region of spinach chloroplast petD mRNA. Mol Cell Biol. 1991 Sep;11(9):4380–4388. doi: 10.1128/mcb.11.9.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Damerval T., Castets A. M., Guglielmi G., Houmard J., Tandeau de Marsac N. Occurrence and distribution of gas vesicle genes among cyanobacteria. J Bacteriol. 1989 Mar;171(3):1445–1452. doi: 10.1128/jb.171.3.1445-1452.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drapier D., Girard-Bascou J., Wollman F. A. Evidence for Nuclear Control of the Expression of the atpA and atpB Chloroplast Genes in Chlamydomonas. Plant Cell. 1992 Mar;4(3):283–295. doi: 10.1105/tpc.4.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egelhoff T., Grossman A. Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3339–3343. doi: 10.1073/pnas.80.11.3339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garnier F., Dubacq J. P., Thomas J. C. Evidence for a Transient Association of New Proteins with the Spirulina maxima Phycobilisome in Relation to Light Intensity. Plant Physiol. 1994 Oct;106(2):747–754. doi: 10.1104/pp.106.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gillham N. W., Boynton J. E., Hauser C. R. Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet. 1994;28:71–93. doi: 10.1146/annurev.ge.28.120194.000443. [DOI] [PubMed] [Google Scholar]
  10. Grossman A. R., Schaefer M. R., Chiang G. G., Collier J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev. 1993 Sep;57(3):725–749. doi: 10.1128/mr.57.3.725-749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hemsley A., Arnheim N., Toney M. D., Cortopassi G., Galas D. J. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 1989 Aug 25;17(16):6545–6551. doi: 10.1093/nar/17.16.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koller K. P., Wehrmeyer W., Schneider H. Isolation and characterization of disc-shaped phycobilisomes from the red alga Rhodella violacea. Arch Microbiol. 1977 Feb 4;112(1):61–67. doi: 10.1007/BF00446655. [DOI] [PubMed] [Google Scholar]
  13. Mazel D., Guglielmi G., Houmard J., Sidler W., Bryant D. A., Tandeau de Marsac N. Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucleic Acids Res. 1986 Nov 11;14(21):8279–8290. doi: 10.1093/nar/14.21.8279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rhie G., Beale S. I. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors. J Biol Chem. 1994 Apr 1;269(13):9620–9626. [PubMed] [Google Scholar]
  15. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  16. Shiozawa J. A., Lottspeich F., Oesterhelt D., Feick R. The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem. 1989 Mar 1;180(1):75–84. doi: 10.1111/j.1432-1033.1989.tb14617.x. [DOI] [PubMed] [Google Scholar]
  17. The electronic Plant Gene Register. Plant Physiol. 1995 Dec;109(4):1497–1499. doi: 10.1104/pp.109.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Troxler R. F., Lin S., Offner G. D. Heme regulates expression of phycobiliprotein photogenes in the unicellular rhodophyte, Cyanidium caldarium. J Biol Chem. 1989 Dec 5;264(34):20596–20601. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES