Abstract
The chlorophyll fluorescence characteristics of mesophyll and bundle-sheath thylakoids from plant species with the C4 dicarboxylic acid pathway of photosynthesis were investigated using flow cytometry. Ten species with the NADP-malic enzyme (NADP-ME) biochemical type of C4 photosynthesis were tested: Digitaria sanguinalis (L.) Scop., Euphorbia maculata L., Portulaca grandiflora Hooker, Saccharum officinarum L., Setaria viridis (L.) Beauv., Zea mays L., and four species of the genus Flaveria. This study also included three species with NAD-ME biochemistry (Atriplex rosea L., Atriplex spongiosa F. Muell., and Portulaca oleracea L.). Two C4 species of unknown biochemical type were investigated: Cyperus papyrus L. and Atriplex tatarica L. Pure mesophyll and bundle-sheath thylakoids were prepared by flow cytometry and characterized by low-temperature fluorescence spectroscopy. In pure bundle-sheath thylakoids from many species with C4 photosynthesis of the NADP-ME type, significant amounts of photosystem II (PSII) emission can be detected by fluorescence spectroscopy. Simulation of fluorescence excitation spectra of these thylakoids showed that PSII light absorption contributes significantly to the apparent excitation spectrum of photosystem I. Model calculations indicated that the excitation energy of PSII is efficiently transferred to photosystem I in bundle-sheath thylakoids of many NADP-ME species.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfonso M., Montoya G., Cases R., Rodríguez R., Picorel R. Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry. 1994 Aug 30;33(34):10494–10500. doi: 10.1021/bi00200a034. [DOI] [PubMed] [Google Scholar]
- Allen J. F. How does protein phosphorylation regulate photosynthesis? Trends Biochem Sci. 1992 Jan;17(1):12–17. doi: 10.1016/0968-0004(92)90418-9. [DOI] [PubMed] [Google Scholar]
- Anandan S., Morishige D. T., Thornber J. P. Light-induced biogenesis of light-harvesting complex I (LHC I) during chloroplast development in barley (hordeum vulgare). Studies using cDNA clones of the 21- and 20-kilodalton LHC I apoproteins. Plant Physiol. 1993 Jan;101(1):227–236. doi: 10.1104/pp.101.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai Z., Ku MSB., Edwards G. E. C4 Photosynthesis (The Effects of Leaf Development on the CO2-Concentrating Mechanism and Photorespiration in Maize). Plant Physiol. 1995 Mar;107(3):815–825. doi: 10.1104/pp.107.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfuss B. W., Thornber J. P. Organization of the Light-Harvesting Complex of Photosystem I and Its Assembly during Plastid Development. Plant Physiol. 1994 Nov;106(3):841–848. doi: 10.1104/pp.106.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graan T., Ort D. R. Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts. J Biol Chem. 1984 Nov 25;259(22):14003–14010. [PubMed] [Google Scholar]
- Horton P., Ruban A. V., Rees D., Pascal A. A., Noctor G., Young A. J. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett. 1991 Nov 4;292(1-2):1–4. doi: 10.1016/0014-5793(91)80819-o. [DOI] [PubMed] [Google Scholar]
- Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Rijgersberg C. P., Amesz J., Thielen A. P., Swager J. A. Fluorescence emission spectra of chloroplasts and subchloroplast preparations at low temperature. Biochim Biophys Acta. 1979 Mar 15;545(3):473–482. doi: 10.1016/0005-2728(79)90156-7. [DOI] [PubMed] [Google Scholar]
- Ruban A. V., Young A. J., Pascal A. A., Horton P. The Effects of Illumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes. Plant Physiol. 1994 Jan;104(1):227–234. doi: 10.1104/pp.104.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin L. A., Arntzen C. J. Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol. 1983 Nov;97(5 Pt 1):1327–1337. doi: 10.1083/jcb.97.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trissl H. W., Wilhelm C. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci. 1993 Nov;18(11):415–419. doi: 10.1016/0968-0004(93)90136-b. [DOI] [PubMed] [Google Scholar]
- Woo K. C., Anderson J. M., Boardman N. K., Downton W. J., Osmond C. B., Thorne S. W. Deficient Photosystem II in Agranal Bundle Sheath Chloroplasts of C(4) Plants. Proc Natl Acad Sci U S A. 1970 Sep;67(1):18–25. doi: 10.1073/pnas.67.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]