Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1079–1087. doi: 10.1104/pp.112.3.1079

Evidence for Opposing Effects of Calmodulin on Cortical Microtubules.

D D Fisher 1, S Gilroy 1, R J Cyr 1
PMCID: PMC158034  PMID: 12226434

Abstract

Microtubule integrity within the cortical array was visualized in detergent-lysed carrot (Daucus carota L.) protoplasts that were exposed to various exogenous levels of Ca2+ and calmodulin (CaM). CaM appears to help stabilize cortical microtubules against the destabilizing action of Ca2+/CaM complexes at low Ca2+ concentrations, but not at higher Ca2+ concentrations. The hypothesis that CaM interacts with microtubules at two different sites, determined by the concentration of Ca2+, is supported by the effects of the CaM antagonists N-(6-aminohexyl)-1-naphthalene-sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfanamide (20 [mu]M) and by affinity chromatography. Two classes of proteins were identified that interact with tubulin and bind to CaM. One class required Ca2+ for CaM binding, whereas the second class bound only when Ca2+ concentrations were low (<320 nM). Thus, CaM's ability to have two opposing effects upon microtubules may be regulated by the concentration of intracellular Ca2+ and its differential interactions with microtubule-associated proteins. Experimental manipulation of intracellular Ca2+ concentrations, as monitored by Indo-1, revealed that the effect of Ca2+ is specific to the cortical microtubules and does not affect actin microfilaments in these cells.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersland J. M., Fisher D. D., Wymer C. L., Cyr R. J., Parthasarathy M. V. Characterization of a monoclonal antibody prepared against plant actin. Cell Motil Cytoskeleton. 1994;29(4):339–344. doi: 10.1002/cm.970290406. [DOI] [PubMed] [Google Scholar]
  2. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  3. Bush D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993 Sep;103(1):7–13. doi: 10.1104/pp.103.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cimler B. M., Andreasen T. J., Andreasen K. I., Storm D. R. P-57 is a neural specific calmodulin-binding protein. J Biol Chem. 1985 Sep 5;260(19):10784–10788. [PubMed] [Google Scholar]
  5. Cyr R. J., Palevitz B. A. Organization of cortical microtubules in plant cells. Curr Opin Cell Biol. 1995 Feb;7(1):65–71. doi: 10.1016/0955-0674(95)80046-8. [DOI] [PubMed] [Google Scholar]
  6. Durso N. A., Cyr R. J. A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha. Plant Cell. 1994 Jun;6(6):893–905. doi: 10.1105/tpc.6.6.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerendasy D. D., Herron S. R., Watson J. B., Sutcliffe J. G. Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. J Biol Chem. 1994 Sep 2;269(35):22420–22426. [PubMed] [Google Scholar]
  8. Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  10. Gregori L., Gillevet P. M., Doan P., Chau V. Mechanism of enzyme regulation by calmodulin and Ca2+. Curr Top Cell Regul. 1985;27:447–454. doi: 10.1016/b978-0-12-152827-0.50045-1. [DOI] [PubMed] [Google Scholar]
  11. Harmon A. C., Putnam-Evans C., Cormier M. J. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. 1987 Apr;83(4):830–837. doi: 10.1104/pp.83.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Job D., Fischer E. H., Margolis R. L. Rapid disassembly of cold-stable microtubules by calmodulin. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4679–4682. doi: 10.1073/pnas.78.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keith C., DiPaola M., Maxfield F. R., Shelanski M. L. Microinjection of Ca++-calmodulin causes a localized depolymerization of microtubules. J Cell Biol. 1983 Dec;97(6):1918–1924. doi: 10.1083/jcb.97.6.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kotani S., Nishida E., Kumagai H., Sakai H. Calmodulin inhibits interaction of actin with MAP2 and Tau, two major microtubule-associated proteins. J Biol Chem. 1985 Sep 5;260(19):10779–10783. [PubMed] [Google Scholar]
  15. Lee Y. C., Wolff J. Calmodulin binds to both microtubule-associated protein 2 and tau proteins. J Biol Chem. 1984 Jan 25;259(2):1226–1230. [PubMed] [Google Scholar]
  16. Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Margolis R. L., Rauch C. T., Job D. Purification and assay of a 145-kDa protein (STOP145) with microtubule-stabilizing and motility behavior. Proc Natl Acad Sci U S A. 1986 Feb;83(3):639–643. doi: 10.1073/pnas.83.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pirollet F., Margolis R. L., Job D. Ca(2+)-calmodulin regulated effectors of microtubule stability in neuronal tissues. Biochim Biophys Acta. 1992 Nov 10;1160(1):113–119. doi: 10.1016/0167-4838(92)90044-e. [DOI] [PubMed] [Google Scholar]
  19. Sweet S. C., Rogers C. M., Welsh M. J. Calmodulin is associated with microtubules forming in PTK1 cells upon release from nocodazole treatment. Cell Motil Cytoskeleton. 1989;12(2):113–122. doi: 10.1002/cm.970120206. [DOI] [PubMed] [Google Scholar]
  20. Sweet S. C., Rogers C. M., Welsh M. J. Calmodulin stabilization of kinetochore microtubule structure to the effect of nocodazole. J Cell Biol. 1988 Dec;107(6 Pt 1):2243–2251. doi: 10.1083/jcb.107.6.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sweet S. C., Welsh M. J. Calmodulin colocalization with cold-stable and nocodazole-stable microtubules in living PtK1 cells. Eur J Cell Biol. 1988 Oct;47(1):88–93. [PubMed] [Google Scholar]
  22. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  23. Török K., Whitaker M. Taking a long, hard look at calmodulin's warm embrace. Bioessays. 1994 Apr;16(4):221–224. doi: 10.1002/bies.950160402. [DOI] [PubMed] [Google Scholar]
  24. Vantard M., Lambert A. M., De Mey J., Picquot P., Van Eldik L. J. Characterization and immunocytochemical distribution of calmodulin in higher plant endosperm cells: localization in the mitotic apparatus. J Cell Biol. 1985 Aug;101(2):488–499. doi: 10.1083/jcb.101.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES