Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1089–1100. doi: 10.1104/pp.112.3.1089

Pressure regulation of the electrical properties of growing Arabidopsis thaliana L. root hairs.

R R Lew 1
PMCID: PMC158035  PMID: 8938411

Abstract

Actively growing Arabidopsis thaliana L. (Columbia wild type) root hairs were used to examine the interplay between cell turgor pressure and electrical properties of the cell: membrane potential, conductance, cell-to-cell coupling, and input resistance. Pressure was directly modulated using a pressure probe or indirectly by changing the extracellular osmolarity. Direct modulation of pressure in the range of 0 to about 15 x 10(5) Pa (normal turgor pressure was 6.8 +/- 2.0 x 10(5) Pa, n = 29) did not affect the membrane potential, conductance, coupling, or input resistance. Indirect modulation of turgor pressure by adding (hyperosmotic) or removing (hypo-osmotic) 200 mM mannitol/sorbitol affected the potential and conductance but not cell-to-cell coupling. Hypo-osmotic treatment depolarized the potential about 40 mV from an initial potential of about -190 mV and increased membrane conductance, consistent with an increase in anion efflux from the cell. Hyperosmotic treatment hyperpolarized the cell about 25 mV from the same initial potential and decreased conductance, consistent with a decline in cation influx. The results are likely due to the presence of an "osmo-sensor," rather than a "turgor-sensor," regulating the cell's response to osmotic stress.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berrier C., Coulombe A., Szabo I., Zoratti M., Ghazi A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem. 1992 Jun 1;206(2):559–565. doi: 10.1111/j.1432-1033.1992.tb16960.x. [DOI] [PubMed] [Google Scholar]
  2. Bisson M. A., Bartholomew D. Osmoregulation or turgor regulation in chara? Plant Physiol. 1984 Feb;74(2):252–255. doi: 10.1104/pp.74.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blatt M. R., Thiel G., Trentham D. R. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature. 1990 Aug 23;346(6286):766–769. doi: 10.1038/346766a0. [DOI] [PubMed] [Google Scholar]
  4. Cao B. J., Abbott L. F. A new computational method for cable theory problems. Biophys J. 1993 Feb;64(2):303–313. doi: 10.1016/S0006-3495(93)81370-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cosgrove D. J., Hedrich R. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta. 1991 Dec;186(1):143–153. doi: 10.1007/BF00201510. [DOI] [PubMed] [Google Scholar]
  6. Cosgrove D. J., Van Volkenburgh E., Cleland R. E. Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques. Planta. 1984;162(1):46–54. doi: 10.1007/BF00397420. [DOI] [PubMed] [Google Scholar]
  7. Cosgrove D. J. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int J Plant Sci. 1993;154(1):10–21. doi: 10.1086/297087. [DOI] [PubMed] [Google Scholar]
  8. Cosgrove D. Biophysical control of plant cell growth. Annu Rev Plant Physiol. 1986;37:377–405. doi: 10.1146/annurev.pp.37.060186.002113. [DOI] [PubMed] [Google Scholar]
  9. Garrill A., Jackson S. L., Lew R. R., Heath I. B. Ion channel activity and tip growth: tip-localized stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol. 1993 Apr;60(2):358–365. [PubMed] [Google Scholar]
  10. Kauss H. Volume regulation in poterioochromonas: involvement of calmodulin in the ca-stimulated activation of isofloridoside-phosphate synthase. Plant Physiol. 1983 Jan;71(1):169–172. doi: 10.1104/pp.71.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kinraide T. B., Wyse R. E. Electrical evidence for turgor inhibition of proton extrusion in sugar beet taproot. Plant Physiol. 1986 Dec;82(4):1148–1150. doi: 10.1104/pp.82.4.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levina N. N., Lew R. R., Hyde G. J., Heath I. B. The roles of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J Cell Sci. 1995 Nov;108(Pt 11):3405–3417. doi: 10.1242/jcs.108.11.3405. [DOI] [PubMed] [Google Scholar]
  13. Lew R. R. Electrogenic transport properties of growing Arabidopsis root hairs : the plasma membrane proton pump and potassium channels. Plant Physiol. 1991 Dec;97(4):1527–1534. doi: 10.1104/pp.97.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Money N. P., Harold F. M. Extension growth of the water mold Achlya: interplay of turgor and wall strength. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4245–4249. doi: 10.1073/pnas.89.10.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reinhold L., Seiden A., Volokita M. Is modulation of the rate of proton pumping a key event in osmoregulation? Plant Physiol. 1984 Jul;75(3):846–849. doi: 10.1104/pp.75.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith T. G., Jr, Barker J. L., Smith B. M., Colburn T. R. Voltage clamping with microelectrodes. J Neurosci Methods. 1980 Dec;3(2):105–128. doi: 10.1016/0165-0270(80)90020-5. [DOI] [PubMed] [Google Scholar]
  17. Walderhaug M. O., Polarek J. W., Voelkner P., Daniel J. M., Hesse J. E., Altendorf K., Epstein W. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J Bacteriol. 1992 Apr;174(7):2152–2159. doi: 10.1128/jb.174.7.2152-2159.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zhu G. L., Boyer J. S. Enlargement in chara studied with a turgor clamp : growth rate is not determined by turgor. Plant Physiol. 1992 Dec;100(4):2071–2080. doi: 10.1104/pp.100.4.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zimmermann U., Rygol J., Balling A., Klöck G., Metzler A., Haase A. Radial Turgor and Osmotic Pressure Profiles in Intact and Excised Roots of Aster tripolium: Pressure Probe Measurements and Nuclear Magnetic Resonance-Imaging Analysis. Plant Physiol. 1992 May;99(1):186–196. doi: 10.1104/pp.99.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES