Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1111–1117. doi: 10.1104/pp.112.3.1111

Induction of a Pea Cell-Wall Invertase Gene by Wounding and Its Localized Expression in Phloem.

L Zhang 1, N S Cohn 1, J P Mitchell 1
PMCID: PMC158037  PMID: 12226435

Abstract

A full-length cell-wall invertase cDNA obtained from pea (Pisum sativum L.) seedlings was cloned previously. The gene exhibits tissue-specific expression, and both its transcript and enzyme activities are abundant only in root tissues. Mechanical wounding dramatically induced the accumulation of the cell-wall invertase mRNA in detached or intact leaves, stems, and roots. In both detached and intact tissues mRNA started to accumulate 3 h after wounding and in detached tissues (except root tissues) was much stronger and lasted longer compared with that in intact pea plants. The induction of cell-wall invertase by wounding was not systemic, since no significant increase of transcript was found in the unwounded tissues remote from the site of wounding. Accumulation of this cell-wall invertase was induced by abscisic or jasmonic acid, and in situ hybridization studies show that this invertase mRNA is differentially localized in wounded plant tissue, being most abundant in the phloem. mRNA accumulation was limited mainly to the wounded area; no significant increase was detected in the unwounded portions of the wounded stem segments. The results suggest that, as part of the wounding response, this cell-wall invertase may provide energy through hexose availability to companion cells in the phloem.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACON J. S., MACDONALD I. R., KNIGHT A. H. THE DEVELOPMENT OF INVERTASE ACTIVITY IN SLICES OF THE ROOT OF BETA VULGARIS L. WASHED UNDER ASEPTIC CONDITIONS. Biochem J. 1965 Jan;94:175–182. doi: 10.1042/bj0940175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dickinson C. D., Altabella T., Chrispeels M. J. Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol. 1991 Feb;95(2):420–425. doi: 10.1104/pp.95.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EDELMAN J., HALL M. A. ENZYME FORMATION IN HIGHER-PLANT TISSUES. DEVELOPMENT OF INVERTASE AND ASCORBATE-OXIDASE ACTIVITIES IN MATURE STORAGE TISSUE OF HELIANTHUS TUBEROSUS L. Biochem J. 1965 May;95:403–410. doi: 10.1042/bj0950403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heineke D., Sonnewald U., Büssis D., Günter G., Leidreiter K., Wilke I., Raschke K., Willmitzer L., Heldt H. W. Apoplastic expression of yeast-derived invertase in potato : effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 1992 Sep;100(1):301–308. doi: 10.1104/pp.100.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Herbers K., Meuwly P., Frommer W. B., Metraux J. P., Sonnewald U. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway. Plant Cell. 1996 May;8(5):793–803. doi: 10.1105/tpc.8.5.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hildmann T., Ebneth M., Peña-Cortés H., Sánchez-Serrano J. J., Willmitzer L., Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leigh R. A., Rees T., Fuller W. A., Banfield J. The location of acid invertase activity and sucrose in the vacuoles of storage roots of beetroot (Beta vulgaris). Biochem J. 1979 Mar 15;178(3):539–547. doi: 10.1042/bj1780539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lorenz K., Lienhard S., Sturm A. Structural organization and differential expression of carrot beta-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isozyme. Plant Mol Biol. 1995 Apr;28(1):189–194. doi: 10.1007/BF00042049. [DOI] [PubMed] [Google Scholar]
  10. Matsushita K., Uritani I. Change in invertase activity of sweet potato in response to wounding and purification and properties of its invertases. Plant Physiol. 1974 Jul;54(1):60–66. doi: 10.1104/pp.54.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nolte K. D., Koch K. E. Companion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading. Plant Physiol. 1993 Mar;101(3):899–905. doi: 10.1104/pp.101.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Peña-Cortés H., Fisahn J., Willmitzer L. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4106–4113. doi: 10.1073/pnas.92.10.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roitsch T., Bittner M., Godt D. E. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol. 1995 May;108(1):285–294. doi: 10.1104/pp.108.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sonnewald U., Brauer M., von Schaewen A., Stitt M., Willmitzer L. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J. 1991 Jul;1(1):95–106. doi: 10.1111/j.1365-313x.1991.00095.x. [DOI] [PubMed] [Google Scholar]
  15. Sturm A., Chrispeels M. J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990 Nov;2(11):1107–1119. doi: 10.1105/tpc.2.11.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tomlinson P. T., Duke E. R., Nolte K. D., Koch K. E. Sucrose synthase and invertase in isolated vascular bundles. Plant Physiol. 1991 Nov;97(3):1249–1252. doi: 10.1104/pp.97.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES