Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1141–1149. doi: 10.1104/pp.112.3.1141

Evidence that barley 3-hydroxy-3-methylglutaryl-coenzyme a reductase kinase is a member of the sucrose nonfermenting-1-related protein kinase family.

J H Barker 1, S P Slocombe 1, K L Ball 1, D G Hardie 1, P R Shewry 1, N G Halford 1
PMCID: PMC158041  PMID: 8938414

Abstract

A protein kinase was partially purified from barley (Hordeum vulgare L. cv Sundance) endosperm by ammonium sulfate fractionation, followed by ion-exchange, Reactive Blue, Mono-Q, and phosphocellulose chromatography. It was shown to phosphorylate Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and a synthetic peptide that was shown previously to act as a substrate for HMG-CoA reductase kinase purified from cauliflower, confirming it to be barley HMG-CoA reductase kinase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation showed the presence of a polypeptide with an approximate relative molecular weight (M(r)) of 60,000, which is the size predicted for the barley sucrose nonfermenting-1 (SNF1)-related protein kinases BKIN2 and BKIN12. Antisera were raised to a rye (Secale cereale L.) SNF1-related protein kinase (RKIN1) expressed in Escherichia coli as a fusion with maltose-binding protein and to a synthetic peptide with a sequence that is conserved in, and specific to, plant members of the SNF1-related protein kinase family. The maltose-binding protein-RKIN1 fusion protein antiserum recognized a doublet of polypeptides with an approximate M(r), of 60,000 in crude endosperm extracts and a single polypeptide in root extracts, which co-migrated with the smaller polypeptide in the endosperm doublet. Both antisera recognized a polypeptide with an approximate M(r) of 60,000 in the partially purified protein kinase preparation, suggesting strongly that barley HMG-CoA reductase kinase is a member of the SNF1-related protein kinase family.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson A., Sabelli P. A., Dickinson J. R., Cole D., Richardson M., Kreis M., Shewry P. R., Halford N. G. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602–8605. doi: 10.1073/pnas.88.19.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball K. L., Barker J., Halford N. G., Hardie D. G. Immunological evidence that HMG-CoA reductase kinase-A is the cauliflower homologue of the RKIN1 subfamily of plant protein kinases. FEBS Lett. 1995 Dec 18;377(2):189–192. doi: 10.1016/0014-5793(95)01343-1. [DOI] [PubMed] [Google Scholar]
  3. Ball K. L., Dale S., Weekes J., Hardie D. G. Biochemical characterization of two forms of 3-hydroxy-3-methylglutaryl-CoA reductase kinase from cauliflower (Brassica oleracia). Eur J Biochem. 1994 Feb 1;219(3):743–750. doi: 10.1111/j.1432-1033.1994.tb18553.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Carling D., Aguan K., Woods A., Verhoeven A. J., Beri R. K., Brennan C. H., Sidebottom C., Davison M. D., Scott J. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994 Apr 15;269(15):11442–11448. [PubMed] [Google Scholar]
  6. Carling D., Clarke P. R., Hardie D. G. Adenosine monophosphate-activated protein kinase: hydroxymethylglutaryl-CoA reductase kinase. Methods Enzymol. 1991;200:362–371. doi: 10.1016/0076-6879(91)00153-n. [DOI] [PubMed] [Google Scholar]
  7. Celenza J. L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
  8. Celenza J. L., Carlson M. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol. 1989 Nov;9(11):5034–5044. doi: 10.1128/mcb.9.11.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke P. R., Hardie D. G. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 1990 Aug;9(8):2439–2446. doi: 10.1002/j.1460-2075.1990.tb07420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  11. Davies S. P., Sim A. T., Hardie D. G. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem. 1990 Jan 12;187(1):183–190. doi: 10.1111/j.1432-1033.1990.tb15293.x. [DOI] [PubMed] [Google Scholar]
  12. Halford N. G., Man A. L., Barker J. H., Monger W., Shewry P. R., Smith A., Purcell P. C. Investigating the role of plant SNF1-related protein kinases. Biochem Soc Trans. 1994 Nov;22(4):953–957. doi: 10.1042/bst0220953. [DOI] [PubMed] [Google Scholar]
  13. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  14. Hannappel U., Vicente-Carbajosa J., Barker J. H., Shewry P. R., Halford N. G. Differential expression of two barley SNF1-related protein kinase genes. Plant Mol Biol. 1995 Mar;27(6):1235–1240. doi: 10.1007/BF00020898. [DOI] [PubMed] [Google Scholar]
  15. Hardie D. G. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992 Feb 12;1123(3):231–238. doi: 10.1016/0005-2760(92)90001-c. [DOI] [PubMed] [Google Scholar]
  16. Hunter T. 1001 protein kinases redux--towards 2000. Semin Cell Biol. 1994 Dec;5(6):367–376. doi: 10.1006/scel.1994.1044. [DOI] [PubMed] [Google Scholar]
  17. Le Guen L., Thomas M., Bianchi M., Halford N. G., Kreis M. Structure and expression of a gene from Arabidopsis thaliana encoding a protein related to SNF1 protein kinase. Gene. 1992 Oct 21;120(2):249–254. doi: 10.1016/0378-1119(92)90100-4. [DOI] [PubMed] [Google Scholar]
  18. Mackintosh R. W., Davies S. P., Clarke P. R., Weekes J., Gillespie J. G., Gibb B. J., Hardie D. G. Evidence for a protein kinase cascade in higher plants. 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem. 1992 Nov 1;209(3):923–931. doi: 10.1111/j.1432-1033.1992.tb17364.x. [DOI] [PubMed] [Google Scholar]
  19. Maina C. V., Riggs P. D., Grandea A. G., 3rd, Slatko B. E., Moran L. S., Tagliamonte J. A., McReynolds L. A., Guan C. D. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene. 1988 Dec 30;74(2):365–373. doi: 10.1016/0378-1119(88)90170-9. [DOI] [PubMed] [Google Scholar]
  20. Mitchelhill K. I., Stapleton D., Gao G., House C., Michell B., Katsis F., Witters L. A., Kemp B. E. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem. 1994 Jan 28;269(4):2361–2364. [PubMed] [Google Scholar]
  21. Munday M. R., Campbell D. G., Carling D., Hardie D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem. 1988 Aug 1;175(2):331–338. doi: 10.1111/j.1432-1033.1988.tb14201.x. [DOI] [PubMed] [Google Scholar]
  22. Muranaka T., Banno H., Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol. 1994 May;14(5):2958–2965. doi: 10.1128/mcb.14.5.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schaeffer E., Smith D., Mardon G., Quinn W., Zuker C. Isolation and characterization of two new drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. Cell. 1989 May 5;57(3):403–412. doi: 10.1016/0092-8674(89)90915-x. [DOI] [PubMed] [Google Scholar]
  24. Witters L. A., Watts T. D. Yeast acetyl-CoA carboxylase: in vitro phosphorylation by mammalian and yeast protein kinases. Biochem Biophys Res Commun. 1990 Jun 15;169(2):369–376. doi: 10.1016/0006-291x(90)90341-j. [DOI] [PubMed] [Google Scholar]
  25. Woods A., Munday M. R., Scott J., Yang X., Carlson M., Carling D. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem. 1994 Jul 29;269(30):19509–19515. [PubMed] [Google Scholar]
  26. di Guan C., Li P., Riggs P. D., Inouye H. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene. 1988 Jul 15;67(1):21–30. doi: 10.1016/0378-1119(88)90004-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES