Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1321–1330. doi: 10.1104/pp.112.3.1321

Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit.

E M Klann 1, B Hall 1, A B Bennett 1
PMCID: PMC158060  PMID: 8938422

Abstract

Invertase (beta-fructosidase, EC 3.2.1.26) hydrolyzes sucrose to hexose sugars and thus plays a fundamental role in the energy requirements for plant growth and maintenance. Transgenic plants with altered extracellular acid invertase have highly disturbed growth habits. We investigated the role of intracellular soluble acid invertase in plant and fruit development. Transgenic tomato (Lycopersicon esculentum Mill.) plants expressing a constitutive antisense invertase transgene grew identically to wild-type plants. Several lines of transgenic fruit expressing a constitutive antisense invertase gene had increased sucrose and decreased hexose sugar concentrations. Each transgenic line with fruit that had increased sucrose concentrations also had greatly reduced levels of acid invertase in ripe fruit. Sucrose-accumulating fruit were approximately 30% smaller than control fruit, and this differential growth correlated with high rates of sugar accumulation during the last stage of development. These data suggest that soluble acid invertase controls sugar composition in tomato fruit and that this change in composition contributes to alterations in fruit size. In addition, sucrose-accumulating fruit have elevated rates of ethylene evolution relative to control fruit, perhaps as a result of the smaller fruit size of the sucrose-accumulating transgenic lines.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birkett C. R., Foster K. E., Johnson L., Gull K. Use of monoclonal antibodies to analyse the expression of a multi-tubulin family. FEBS Lett. 1985 Aug 5;187(2):211–218. doi: 10.1016/0014-5793(85)81244-8. [DOI] [PubMed] [Google Scholar]
  3. Deikman J., Fischer R. L. Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 1988 Nov;7(11):3315–3320. doi: 10.1002/j.1460-2075.1988.tb03202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Howard H. F., Witham F. H. Invertase activity and the kinetin-stimulated enlargement of detached radish cotyledons. Plant Physiol. 1983 Oct;73(2):304–308. doi: 10.1104/pp.73.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klann E. M., Chetelat R. T., Bennett A. B. Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit. Plant Physiol. 1993 Nov;103(3):863–870. doi: 10.1104/pp.103.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klann E., Yelle S., Bennett A. B. Tomato fruit Acid invertase complementary DNA : nucleotide and deduced amino Acid sequences. Plant Physiol. 1992 May;99(1):351–353. doi: 10.1104/pp.99.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koch K. E., Nolte K. D., Duke E. R., McCarty D. R., Avigne W. T. Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes. Plant Cell. 1992 Jan;4(1):59–69. doi: 10.1105/tpc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Laurière C., Laurière M., Sturm A., Faye L., Chrispeels M. J. Characterization of beta-fructosidase, an extracellular glycoprotein of carrot cells. Biochimie. 1988 Nov;70(11):1483–1491. doi: 10.1016/0300-9084(88)90285-4. [DOI] [PubMed] [Google Scholar]
  11. Mason H. S., Dewald D. B., Creelman R. A., Mullet J. E. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. Plant Physiol. 1992 Mar;98(3):859–867. doi: 10.1104/pp.98.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miron D., Schaffer A. A. Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Activities in Developing Fruit of Lycopersicon esculentum Mill. and the Sucrose Accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol. 1991 Feb;95(2):623–627. doi: 10.1104/pp.95.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Odell J. T., Nagy F., Chua N. H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. 1985 Feb 28-Mar 6Nature. 313(6005):810–812. doi: 10.1038/313810a0. [DOI] [PubMed] [Google Scholar]
  14. Penarrubia L., Aguilar M., Margossian L., Fischer R. L. An Antisense Gene Stimulates Ethylene Hormone Production during Tomato Fruit Ripening. Plant Cell. 1992 Jun;4(6):681–687. doi: 10.1105/tpc.4.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sato T., Iwatsubo T., Takahashi M., Nakagawa H., Ogura N., Mori H. Intercellular localization of acid invertase in tomato fruit and molecular cloning of a cDNA for the enzyme. Plant Cell Physiol. 1993 Mar;34(2):263–269. [PubMed] [Google Scholar]
  16. Unger C., Hofsteenge J., Sturm A. Purification and characterization of a soluble beta-fructofuranosidase from Daucus carota. Eur J Biochem. 1992 Mar 1;204(2):915–921. doi: 10.1111/j.1432-1033.1992.tb16712.x. [DOI] [PubMed] [Google Scholar]
  17. Wenzler H., Mignery G., Fisher L., Park W. Sucrose-regulated expression of a chimeric potato tuber gene in leaves of transgenic tobacco plants. Plant Mol Biol. 1989 Oct;13(4):347–354. doi: 10.1007/BF00015546. [DOI] [PubMed] [Google Scholar]
  18. Yelle S., Chetelat R. T., Dorais M., Deverna J. W., Bennett A. B. Sink Metabolism in Tomato Fruit : IV. Genetic and Biochemical Analysis of Sucrose Accumulation. Plant Physiol. 1991 Apr;95(4):1026–1035. doi: 10.1104/pp.95.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yelle S., Hewitt J. D., Robinson N. L., Damon S., Bennett A. B. Sink Metabolism in Tomato Fruit : III. Analysis of Carbohydrate Assimilation in a Wild Species. Plant Physiol. 1988 Jul;87(3):737–740. doi: 10.1104/pp.87.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES