Abstract
A gene (FbL2A) that is preferentially expressed in cotton (Gossypium barbadense L. cv Sea Island) fiber was isolated and characterized. Genomic and cDNA analyses suggest multiple FbL2A genes in cotton. The gene is developmentally regulated and is activated during late primary and early secondary wall synthesis stages. FbL2A encodes a polypeptide of 43.4 kD and a predicted isoelectric point of 5.97. The nucleotide-derived protein is highly hydrophilic except for a hydrophobic N terminus and has a compositional bias for glutamic acid (26.3 mol%) and lysine (18.9 mol%). Sixty-two percent of the putative protein is composed of repeat motifs. A 55-amino-acid peptide region is repeated four times in a concatenate fashion within the protein. The function of the protein in the fiber cells is not known. A 2.3-kb DNA fragment 5' from the FbL2A gene is shown to direct expression of heterologous proteins in transgenic cotton in a fiber-specific and developmentally regulated fashion. The FbL2A promoter was used to express in transgenic cotton genes encoding acetoacetyl-coenzyme A reductase and polyhydroxyalkanoic acid synthase, which are involved in the synthesis of the thermoplastic polymer polyhydroxybutyric acid. Transgenic plants containing both enzymes produced polyhydroxybutyric acid in fiber. Thus, the FbL2A promoter is useful in genetic engineering schemes to modify cotton fiber.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arora R., Wisniewski M. E. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol. 1994 May;105(1):95–101. doi: 10.1104/pp.105.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bansal K. C., Viret J. F., Haley J., Khan B. M., Schantz R., Bogorad L. Transient expression from cab-m1 and rbcS-m3 promoter sequences is different in mesophyll and bundle sheath cells in maize leaves. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3654–3658. doi: 10.1073/pnas.89.8.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhindsa R. S., Beasley C. A., Ting I. P. Osmoregulation in Cotton Fiber: Accumulation of Potassium and Malate during Growth. Plant Physiol. 1975 Sep;56(3):394–398. doi: 10.1104/pp.56.3.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houde M., Danyluk J., Laliberté J. F., Rassart E., Dhindsa R. S., Sarhan F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 1992 Aug;99(4):1381–1387. doi: 10.1104/pp.99.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- John M. E., Crow L. J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5769–5773. doi: 10.1073/pnas.89.13.5769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- John M. E., Keller G. Characterization of mRNA for a proline-rich protein of cotton fiber. Plant Physiol. 1995 Jun;108(2):669–676. doi: 10.1104/pp.108.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- John M. E. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol. 1996 Jan;30(2):297–306. doi: 10.1007/BF00020115. [DOI] [PubMed] [Google Scholar]
- Karr D. B., Waters J. K., Emerich D. W. Analysis of Poly-beta-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection. Appl Environ Microbiol. 1983 Dec;46(6):1339–1344. doi: 10.1128/aem.46.6.1339-1344.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Neven L. G., Haskell D. W., Hofig A., Li Q. B., Guy C. L. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993 Jan;21(2):291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
- Odell J. T., Nagy F., Chua N. H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. 1985 Feb 28-Mar 6Nature. 313(6005):810–812. doi: 10.1038/313810a0. [DOI] [PubMed] [Google Scholar]
- Ow D. W., Jacobs J. D., Howell S. H. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4870–4874. doi: 10.1073/pnas.84.14.4870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peoples O. P., Sinskey A. J. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem. 1989 Sep 15;264(26):15298–15303. [PubMed] [Google Scholar]
- Peoples O. P., Sinskey A. J. Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem. 1989 Sep 15;264(26):15293–15297. [PubMed] [Google Scholar]
- Perlman D., Halvorson H. O. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983 Jun 25;167(2):391–409. doi: 10.1016/s0022-2836(83)80341-6. [DOI] [PubMed] [Google Scholar]
- Poirier Y., Dennis D. E., Klomparens K., Somerville C. Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science. 1992 Apr 24;256(5056):520–523. doi: 10.1126/science.256.5056.520. [DOI] [PubMed] [Google Scholar]
- Saito T., Fukui T., Ikeda F., Tanaka Y., Tomita K. An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera. Arch Microbiol. 1977 Sep 28;114(3):211–217. doi: 10.1007/BF00446864. [DOI] [PubMed] [Google Scholar]
- Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbüchel A., Hustede E., Liebergesell M., Pieper U., Timm A., Valentin H. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev. 1992 Dec;9(2-4):217–230. doi: 10.1111/j.1574-6968.1992.tb05841.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]