Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1365–1374. doi: 10.1104/pp.112.3.1365

Isolation and characterization of a diverse set of genes from carrot somatic embryos.

X Lin 1, G J Hwang 1, J L Zimmerman 1
PMCID: PMC158065  PMID: 8938424

Abstract

The early events in plant embryogenesis are critical for pattern formation, since it is during this process that the primary apical meristems and the embryo polarity axis are established. However, little is known about the molecular events that are unique to the early stages of embryogenesis. This study of gene expression during plant embryogenesis is focused on identifying molecular markers from carrot (Daucus carota) somatic embryos and characterizing the expression and regulation of these genes through embryo development. A cDNA library, prepared from polysomal mRNA of globular embryos, was screened using a subtracted probe; 49 clones were isolated and preliminarily characterized. Sequence analysis revealed a large set of genes, including many new genes, that are expressed in a variety of patterns during embryogenesis and may be regulated by different molecular mechanisms. To our knowledge, this group of clones represents the largest collection of embryo-enhanced genes isolated thus far, and demonstrates the utility of the subtracted-probe approach to the somatic embryo system. It is anticipated that many of these genes may serve as useful molecular markers for early embryo development.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almoguera C., Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol. 1992 Aug;19(5):781–792. doi: 10.1007/BF00027074. [DOI] [PubMed] [Google Scholar]
  2. Apuya N. R., Zimmerman J. L. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos. Plant Cell. 1992 Jun;4(6):657–665. doi: 10.1105/tpc.4.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belanger F. C., Kriz A. L. Molecular characterization of the major maize embryo globulin encoded by the glb1 gene. Plant Physiol. 1989 Oct;91(2):636–643. doi: 10.1104/pp.91.2.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi J. H., Liu L. S., Borkird C., Sung Z. R. Cloning of genes developmentally regulated during plant embryogenesis. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1906–1910. doi: 10.1073/pnas.84.7.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Close T. J., Kortt A. A., Chandler P. M. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol. 1989 Jul;13(1):95–108. doi: 10.1007/BF00027338. [DOI] [PubMed] [Google Scholar]
  7. Darwish K., Wang L. Q., Hwang C. H., Apuya N., Zimmerman J. L. Cloning and characterization of genes encoding low molecular weight heat shock proteins from carrot. Plant Mol Biol. 1991 Apr;16(4):729–731. doi: 10.1007/BF00023437. [DOI] [PubMed] [Google Scholar]
  8. Franz G., Hatzopoulos P., Jones T. J., Krauss M., Sung Z. R. Molecular and genetic analysis of an embryonic gene, DC 8, from Daucus carota L. Mol Gen Genet. 1989 Jul;218(1):143–151. doi: 10.1007/BF00330577. [DOI] [PubMed] [Google Scholar]
  9. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  10. Goldberg R. B., Barker S. J., Perez-Grau L. Regulation of gene expression during plant embryogenesis. Cell. 1989 Jan 27;56(2):149–160. doi: 10.1016/0092-8674(89)90888-x. [DOI] [PubMed] [Google Scholar]
  11. Goupil P., Hatzopoulos P., Franz G., Hempel F. D., You R., Sung Z. R. Transcriptional regulation of a seed-specific carrot gene, DC8. Plant Mol Biol. 1992 Apr;18(6):1049–1063. doi: 10.1007/BF00047708. [DOI] [PubMed] [Google Scholar]
  12. Györgyey J., Gartner A., Németh K., Magyar Z., Hirt H., Heberle-Bors E., Dudits D. Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol. 1991 Jun;16(6):999–1007. doi: 10.1007/BF00016072. [DOI] [PubMed] [Google Scholar]
  13. Halperin W., Jensen W. A. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967 May;18(3):428–443. doi: 10.1016/s0022-5320(67)80128-x. [DOI] [PubMed] [Google Scholar]
  14. Helm K. W., Abernethy R. H. Heat Shock Proteins and Their mRNAs in Dry and Early Imbibing Embryos of Wheat. Plant Physiol. 1990 Aug;93(4):1626–1633. doi: 10.1104/pp.93.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hughes D. W., Galau G. A. Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell. 1991 Jun;3(6):605–618. doi: 10.1105/tpc.3.6.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hughes D. W., Galau G. A. Temporally modular gene expression during cotyledon development. Genes Dev. 1989 Mar;3(3):358–369. doi: 10.1101/gad.3.3.358. [DOI] [PubMed] [Google Scholar]
  17. Jackson A. O., Larkins B. A. Influence of Ionic Strength, pH, and Chelation of Divalent Metals on Isolation of Polyribosomes from Tobacco Leaves. Plant Physiol. 1976 Jan;57(1):5–10. doi: 10.1104/pp.57.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawahara R., Sunabori S., Fukuda H., Komamine A. A gene expressed preferentially in the globular stage of somatic embryogenesis encodes elongation-factor 1 alpha in carrot. Eur J Biochem. 1992 Oct 1;209(1):157–162. doi: 10.1111/j.1432-1033.1992.tb17272.x. [DOI] [PubMed] [Google Scholar]
  19. Kim Y., Oliver D. J. Molecular cloning, transcriptional characterization, and sequencing of cDNA encoding the H-protein of the mitochondrial glycine decarboxylase complex in peas. J Biol Chem. 1990 Jan 15;265(2):848–853. [PubMed] [Google Scholar]
  20. Koornneef M., Hanhart C. J., Hilhorst H. W., Karssen C. M. In Vivo Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in Arabidopsis thaliana. Plant Physiol. 1989 Jun;90(2):463–469. doi: 10.1104/pp.90.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  22. Martin W., Lydiate D., Brinkmann H., Forkmann G., Saedler H., Cerff R. Molecular phylogenies in angiosperm evolution. Mol Biol Evol. 1993 Jan;10(1):140–162. doi: 10.1093/oxfordjournals.molbev.a039989. [DOI] [PubMed] [Google Scholar]
  23. McCarty D. R., Hattori T., Carson C. B., Vasil V., Lazar M., Vasil I. K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991 Sep 6;66(5):895–905. doi: 10.1016/0092-8674(91)90436-3. [DOI] [PubMed] [Google Scholar]
  24. Mechler B., Rabbitts T. H. Membrane-bound ribosomes of myeloma cells. IV. mRNA complexity of free and membrane-bound polysomes. J Cell Biol. 1981 Jan;88(1):29–36. doi: 10.1083/jcb.88.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Metzler M. C., Cutt J. R., Klessig D. F. Isolation and Characterization of a Gene Encoding a PR-1-Like Protein from Arabidopsis thaliana. Plant Physiol. 1991 May;96(1):346–348. doi: 10.1104/pp.96.1.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nadeau J. A., Zhang X. S., Li J., O'Neill S. D. Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell. 1996 Feb;8(2):213–239. doi: 10.1105/tpc.8.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Naito S., Hirai M. Y., Chino M., Komeda Y. Expression of a Soybean (Glycine max [L.] Merr.) Seed Storage Protein Gene in Transgenic Arabidopsis thaliana and Its Response to Nutritional Stress and to Abscisic Acid Mutations. Plant Physiol. 1994 Feb;104(2):497–503. doi: 10.1104/pp.104.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quigley F., Villiot M. L., Mache R. Nucleotide sequence and expression of a novel glycine-rich protein gene from Arabidopsis thaliana. Plant Mol Biol. 1991 Oct;17(4):949–952. doi: 10.1007/BF00037079. [DOI] [PubMed] [Google Scholar]
  29. Ryser U., Keller B. Ultrastructural Localization of a Bean Glycine-Rich Protein in Unlignified Primary Walls of Protoxylem Cells. Plant Cell. 1992 Jul;4(7):773–783. doi: 10.1105/tpc.4.7.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sato S., Toya T., Kawahara R., Whittier R. F., Fukuda H., Komamine A. Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Plant Mol Biol. 1995 Apr;28(1):39–46. doi: 10.1007/BF00042036. [DOI] [PubMed] [Google Scholar]
  31. Sheng J., D'Ovidio R., Mehdy M. C. Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J. 1991 Nov;1(3):345–354. doi: 10.1046/j.1365-313x.1991.t01-3-00999.x. [DOI] [PubMed] [Google Scholar]
  32. Sive H. L., St John T. A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. Nucleic Acids Res. 1988 Nov 25;16(22):10937–10937. doi: 10.1093/nar/16.22.10937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Somssich I. E., Schmelzer E., Kawalleck P., Hahlbrock K. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol Gen Genet. 1988 Jul;213(1):93–98. doi: 10.1007/BF00333403. [DOI] [PubMed] [Google Scholar]
  35. Spiker S., Weisshaar B., da Costa e Silva O., Hahlbrock K. Sequence of a histone H2A cDNA from parsley. Nucleic Acids Res. 1990 Oct 11;18(19):5897–5897. doi: 10.1093/nar/18.19.5897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sterk P., Booij H., Schellekens G. A., Van Kammen A., De Vries S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):907–921. doi: 10.1105/tpc.3.9.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sung Z. R., Okimoto R. Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3683–3687. doi: 10.1073/pnas.78.6.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thoma S., Kaneko Y., Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 1993 Mar;3(3):427–436. doi: 10.1046/j.1365-313x.1993.t01-25-00999.x. [DOI] [PubMed] [Google Scholar]
  39. Ulrich T. U., Wurtele E. S., Nikolau B. J. Sequence of EMB-1, an mRNA accumulating specifically in embryos of carrot. Nucleic Acids Res. 1990 May 11;18(9):2826–2826. doi: 10.1093/nar/18.9.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Engelen F. A., De Vries S. C. Extracellular proteins in plant embryogenesis. Trends Genet. 1992 Feb;8(2):66–70. doi: 10.1016/0168-9525(92)90352-5. [DOI] [PubMed] [Google Scholar]
  41. Vance V. B., Huang A. H. The major protein from lipid bodies of maize. Characterization and structure based on cDNA cloning. J Biol Chem. 1987 Aug 15;262(23):11275–11279. [PubMed] [Google Scholar]
  42. Walling L., Drews G. N., Goldberg R. B. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2123–2127. doi: 10.1073/pnas.83.7.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. West MAL., Harada J. J. Embryogenesis in Higher Plants: An Overview. Plant Cell. 1993 Oct;5(10):1361–1369. doi: 10.1105/tpc.5.10.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. West MAL., Yee K. M., Danao J., Zimmerman J. L., Fischer R. L., Goldberg R. B., Harada J. J. LEAFY COTYLEDON1 Is an Essential Regulator of Late Embryogenesis and Cotyledon Identity in Arabidopsis. Plant Cell. 1994 Dec;6(12):1731–1745. doi: 10.1105/tpc.6.12.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wurtele E. S., Wang H., Durgerian S., Nikolau B. J., Ulrich T. H. Characterization of a gene that is expressed early in somatic embryogenesis of Daucus carota. Plant Physiol. 1993 May;102(1):303–312. doi: 10.1104/pp.102.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zimmerman J. L., Apuya N., Darwish K., O'Carroll C. Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell. 1989 Dec;1(12):1137–1146. doi: 10.1105/tpc.1.12.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zimmerman J. L., Cohill P. R. Heat shock and thermotolerance in plant and animal embryogenesis. New Biol. 1991 Jul;3(7):641–650. [PubMed] [Google Scholar]
  48. Zimmerman J. L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell. 1993 Oct;5(10):1411–1423. doi: 10.1105/tpc.5.10.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES