Abstract
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aloni R., Tollier M. T., Monties B. The Role of Auxin and Gibberellin in Controlling Lignin Formation in Primary Phloem Fibers and in Xylem of Coleus blumei Stems. Plant Physiol. 1990 Dec;94(4):1743–1747. doi: 10.1104/pp.94.4.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bate N. J., Orr J., Ni W., Meromi A., Nadler-Hassar T., Doerner P. W., Dixon R. A., Lamb C. J., Elkind Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7608–7612. doi: 10.1073/pnas.91.16.7608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowler C., Slooten L., Vandenbranden S., De Rycke R., Botterman J., Sybesma C., Van Montagu M., Inzé D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991 Jul;10(7):1723–1732. doi: 10.1002/j.1460-2075.1991.tb07696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Campbell M. M., Sederoff R. R. Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol. 1996 Jan;110(1):3–13. doi: 10.1104/pp.110.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elkind Y., Edwards R., Mavandad M., Hedrick S. A., Ribak O., Dixon R. A., Lamb C. J. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057–9061. doi: 10.1073/pnas.87.22.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkins S. W., Boudet A. M. Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook. Plant Physiol. 1994 Jan;104(1):75–84. doi: 10.1104/pp.104.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUC J., NELSON O. E. THE ABNORMAL LIGNINS PRODUCED BY THE BROWN-MIDRIB MUTANTS OF MAIZE. I. THE BROWN-MIDRIB-1 MUTANT. Arch Biochem Biophys. 1964 Apr;105:103–113. doi: 10.1016/0003-9861(64)90240-1. [DOI] [PubMed] [Google Scholar]
- Lewis N. G., Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455–496. doi: 10.1146/annurev.pp.41.060190.002323. [DOI] [PubMed] [Google Scholar]
- Speer E. O. A method of retaining phloroglucinol proof of lignin. Stain Technol. 1987 Jul;62(4):279–280. doi: 10.3109/10520298709108008. [DOI] [PubMed] [Google Scholar]
- Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vignols F., Rigau J., Torres M. A., Capellades M., Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell. 1995 Apr;7(4):407–416. doi: 10.1105/tpc.7.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyrambik D., Grisebach H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem. 1975 Nov 1;59(1):9–15. doi: 10.1111/j.1432-1033.1975.tb02418.x. [DOI] [PubMed] [Google Scholar]
- de Lange P., van Blokland R., Kooter J. M., Mol J. N. Suppression of flavonoid flower pigmentation genes in Petunia hybrida by the introduction of antisense and sense genes. Curr Top Microbiol Immunol. 1995;197:57–75. doi: 10.1007/978-3-642-79145-1_5. [DOI] [PubMed] [Google Scholar]