Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1513–1522. doi: 10.1104/pp.112.4.1513

Purification and characterization of neutral and alkaline invertase from carrot.

H S Lee 1, A Sturm 1
PMCID: PMC158084  PMID: 8972597

Abstract

Neutral and alkaline invertase were identified in cells of a suspension culture of carrot (Daucus carota L.) and purified to electrophoretic homogeneity. Neutral invertase is an octamer with a molecular mass of 456 kD and subunits of 57 kD, whereas alkaline invertase is a tetramer with a molecular mass of 504 kD and subunits of 126 kD. Both enzymes had sharp pH profiles, with maximal activities at pH 6.8 for neutral invertase and pH 8.0 for alkaline invertase, and both hydrolyzed sucrose with typical hyperbolic kinetics and similar Km values of about 20 mM at pH 7.5. Neutral invertase also hydrolyzed raffinose and stachyose and, therefore, is a beta-fructofuranosidase. In contrast, alkaline invertase was highly specific for sucrose. Fructose acted as a competitive inhibitor of both enzymes, with Ki values of about 15 mM. Glucose was a noncompetitive inhibitor of both neutral and alkaline invertase, with a Ki of about 30 mM. Neither enzyme was inhibited by HgCl2. Alkaline invertase was markedly inhibited by CaCl2, MgCl2, and MnCl2, and neutral invertase was not. In contrast to alkaline invertase, neutral invertase was inhibited by the nucleotides ATP, CTP, GTP, and UTP.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen J. Q., Black C. C. Biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Arch Biochem Biophys. 1992 May 15;295(1):61–69. doi: 10.1016/0003-9861(92)90488-i. [DOI] [PubMed] [Google Scholar]
  2. Copeland L., Harrison D. D., Turner J. F. Fructokinase (Fraction III) of Pea Seeds. Plant Physiol. 1978 Aug;62(2):291–294. doi: 10.1104/pp.62.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Faye L., Chrispeels M. J. Characterization of N-linked oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of the blots with glycosidases. Anal Biochem. 1985 Aug 15;149(1):218–224. doi: 10.1016/0003-2697(85)90498-1. [DOI] [PubMed] [Google Scholar]
  4. King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
  5. Klann E. M., Chetelat R. T., Bennett A. B. Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit. Plant Physiol. 1993 Nov;103(3):863–870. doi: 10.1104/pp.103.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laurière C., Laurière M., Sturm A., Faye L., Chrispeels M. J. Characterization of beta-fructosidase, an extracellular glycoprotein of carrot cells. Biochimie. 1988 Nov;70(11):1483–1491. doi: 10.1016/0300-9084(88)90285-4. [DOI] [PubMed] [Google Scholar]
  7. Laurière M., Laurière C., Chrispeels M. J., Johnson K. D., Sturm A. Characterization of a xylose-specific antiserum that reacts with the complex asparagine-linked glycans of extracellular and vacuolar glycoproteins. Plant Physiol. 1989 Jul;90(3):1182–1188. doi: 10.1104/pp.90.3.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leigh R. A., Rees T., Fuller W. A., Banfield J. The location of acid invertase activity and sucrose in the vacuoles of storage roots of beetroot (Beta vulgaris). Biochem J. 1979 Mar 15;178(3):539–547. doi: 10.1042/bj1780539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Masuda H., Takahashi T., Sugawara S. Acid and alkaline invertases in suspension cultures of sugar beet cells. Plant Physiol. 1988 Jan;86(1):312–317. doi: 10.1104/pp.86.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matsushita K., Uritani I. Change in invertase activity of sweet potato in response to wounding and purification and properties of its invertases. Plant Physiol. 1974 Jul;54(1):60–66. doi: 10.1104/pp.54.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morell M., Copeland L. Enzymes of sucrose breakdown in soybean nodules: alkaline invertase. Plant Physiol. 1984 Apr;74(4):1030–1034. doi: 10.1104/pp.74.4.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Obenland D. M., Simmen U., Boller T., Wiemken A. Purification and characterization of three soluble invertases from barley (Hordeum vulgare L.) leaves. Plant Physiol. 1993 Apr;101(4):1331–1339. doi: 10.1104/pp.101.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ranwala A. P., Iwanami S. S., Masuda H. Acid and Neutral Invertases in the Mesocarp of Developing Muskmelon (Cucumis melo L. cv Prince) Fruit. Plant Physiol. 1991 Jul;96(3):881–886. doi: 10.1104/pp.96.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ross H. A., McRae D., Davies H. V. Sucrolytic Enzyme Activities in Cotyledons of the Faba Bean (Developmental Changes and Purification of Alkaline Invertase). Plant Physiol. 1996 May;111(1):329–338. doi: 10.1104/pp.111.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sturm A., Chrispeels M. J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990 Nov;2(11):1107–1119. doi: 10.1105/tpc.2.11.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sturm A. Heterogeneity of the complex N-linked oligosaccharides at specific glycosylation sites of two secreted carrot glycoproteins. Eur J Biochem. 1991 Jul 1;199(1):169–179. doi: 10.1111/j.1432-1033.1991.tb16106.x. [DOI] [PubMed] [Google Scholar]
  17. Sung Z. R. Turbidimetric measurement of plant cell culture growth. Plant Physiol. 1976 Mar;57(3):460–462. doi: 10.1104/pp.57.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Turner J. F., Copeland L. Hexokinase II of Pea Seeds. Plant Physiol. 1981 Nov;68(5):1123–1127. doi: 10.1104/pp.68.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Unger C., Hofsteenge J., Sturm A. Purification and characterization of a soluble beta-fructofuranosidase from Daucus carota. Eur J Biochem. 1992 Mar 1;204(2):915–921. doi: 10.1111/j.1432-1033.1992.tb16712.x. [DOI] [PubMed] [Google Scholar]
  20. Wu L. L., Song I., Karuppiah N., Kaufman P. B. Kinetic induction of oat shoot pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by the polymerase chain reaction. Plant Mol Biol. 1993 Mar;21(6):1175–1179. doi: 10.1007/BF00023613. [DOI] [PubMed] [Google Scholar]
  21. Wyse R. E., Zamski E., Tomos A. D. Turgor regulation of sucrose transport in sugar beet taproot tissue. Plant Physiol. 1986 Jun;81(2):478–481. doi: 10.1104/pp.81.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES