Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1523–1530. doi: 10.1104/pp.112.4.1523

Regulation of the Expression of the Glycine Decarboxylase Complex during Pea Leaf Development.

P Vauclare 1, N Diallo 1, J Bourguignon 1, D Macherel 1, R Douce 1
PMCID: PMC158085  PMID: 12226462

Abstract

The expression of the genes encoding the four proteins (P, H, T, and L) of glycine decarboxylase, a multienzymatic complex involved in the mitochondrial step of the photorespiration pathway, was examined during pea (Pisum sativum) leaf development in comparison with ribulose-1,5-bisphosphate carboxylase/oxygenase. Mitochondria from the primary leaf were isolated at several well-defined stages of development. Their capacity to oxidize glycine was negligible during the earlier stages but increased dramatically once the leaflet opened. This was correlated with the accumulation of the glycine decarboxylase complex (GDC) proteins, which was shown to occur in preexisting mitochondria, producing an increase in their density. The transcription of the GDC genes was coordinated and occurred early, with a peak at 7 d, a stage at which mitochondria are unable to oxidize glycine. This implies the existence of posttranscriptional control of gene expression. The comparison of the expression patterns of the genes encoding specific proteins of GDC with that of rbcS genes suggests a common regulation scheme that is related to light induction. However, ribulose-1,5-bisphosphate carboxylase/oxygenase is present in the chloroplast well before GDC fills the mitochondria, suggesting that the setup of photorespiration occurs in cells already engaged in active photosynthesis.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourguignon J., Macherel D., Neuburger M., Douce R. Isolation, characterization, and sequence analysis of a cDNA clone encoding L-protein, the dihydrolipoamide dehydrogenase component of the glycine cleavage system from pea-leaf mitochondria. Eur J Biochem. 1992 Mar 1;204(2):865–873. doi: 10.1111/j.1432-1033.1992.tb16706.x. [DOI] [PubMed] [Google Scholar]
  2. Bourguignon J., Merand V., Rawsthorne S., Forest E., Douce R. Glycine decarboxylase and pyruvate dehydrogenase complexes share the same dihydrolipoamide dehydrogenase in pea leaf mitochondria: evidence from mass spectrometry and primary-structure analysis. Biochem J. 1996 Jan 1;313(Pt 1):229–234. doi: 10.1042/bj3130229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourguignon J., Neuburger M., Douce R. Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase. Biochem J. 1988 Oct 1;255(1):169–178. doi: 10.1042/bj2550169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourguignon J., Vauclare P., Merand V., Forest E., Neuburger M., Douce R. Glycine decarboxylase complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analyses of the T protein. Eur J Biochem. 1993 Oct 1;217(1):377–386. doi: 10.1111/j.1432-1033.1993.tb18256.x. [DOI] [PubMed] [Google Scholar]
  5. Coruzzi G., Broglie R., Cashmore A., Chua N. H. Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid polypeptide. J Biol Chem. 1983 Feb 10;258(3):1399–1402. [PubMed] [Google Scholar]
  6. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  7. DuBell A. N., Mullet J. E. Differential Transcription of Pea Chloroplast Genes during Light-Induced Leaf Development (Continuous Far-Red Light Activates Chloroplast Transcription). Plant Physiol. 1995 Sep;109(1):105–112. doi: 10.1104/pp.109.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilmartin P. M., Sarokin L., Memelink J., Chua N. H. Molecular light switches for plant genes. Plant Cell. 1990 May;2(5):369–378. doi: 10.1105/tpc.2.5.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kikuchi G., Hiraga K. The mitochondrial glycine cleavage system. Unique features of the glycine decarboxylation. Mol Cell Biochem. 1982 Jun 25;45(3):137–149. doi: 10.1007/BF00230082. [DOI] [PubMed] [Google Scholar]
  10. Kim Y., Oliver D. J. Molecular cloning, transcriptional characterization, and sequencing of cDNA encoding the H-protein of the mitochondrial glycine decarboxylase complex in peas. J Biol Chem. 1990 Jan 15;265(2):848–853. [PubMed] [Google Scholar]
  11. Klein S. M., Sagers R. D. Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine in Peptococcus glycinophilus. J Biol Chem. 1966 Jan 10;241(1):197–205. [PubMed] [Google Scholar]
  12. Kochi H., Kikuchi G. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine. Arch Biochem Biophys. 1969 Jul;132(2):359–369. doi: 10.1016/0003-9861(69)90377-4. [DOI] [PubMed] [Google Scholar]
  13. Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neuburger M., Douce R. Oxydation du malate, du NADH et de la glycine par les mitochondries de plantes en C3 et C4. C R Acad Sci Hebd Seances Acad Sci D. 1977 Oct 10;285(8):881–884. [PubMed] [Google Scholar]
  15. Neuburger M., Journet E. P., Bligny R., Carde J. P., Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982 Aug;217(1):312–323. doi: 10.1016/0003-9861(82)90507-0. [DOI] [PubMed] [Google Scholar]
  16. Rogers W. J., Jordan B. R., Rawsthorne S., Tobin A. K. Changes to the Stoichiometry of Glycine Decarboxylase Subunits during Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.) Leaf Development. Plant Physiol. 1991 Jul;96(3):952–956. doi: 10.1104/pp.96.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sinclair D. A., Hong S. P., Dawes I. W. Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. Mol Microbiol. 1996 Feb;19(3):611–623. doi: 10.1046/j.1365-2958.1996.419947.x. [DOI] [PubMed] [Google Scholar]
  18. Srinivasan R., Oliver D. J. Light-dependent and tissue-specific expression of the H-protein of the glycine decarboxylase complex. Plant Physiol. 1995 Sep;109(1):161–168. doi: 10.1104/pp.109.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tobin A. K., Thorpe J. R., Hylton C. M., Rawsthorne S. Spatial and Temporal Influences on the Cell-Specific Distribution of Glycine Decarboxylase in Leaves of Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.). Plant Physiol. 1989 Nov;91(3):1219–1225. doi: 10.1104/pp.91.3.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Turner S. R., Ireland R., Rawsthorne S. Cloning and characterization of the P subunit of glycine decarboxylase from pea (Pisum sativum). J Biol Chem. 1992 Mar 15;267(8):5355–5360. [PubMed] [Google Scholar]
  21. Turner S. R., Ireland R., Rawsthorne S. Purification and primary amino acid sequence of the L subunit of glycine decarboxylase. Evidence for a single lipoamide dehydrogenase in plant mitochondria. J Biol Chem. 1992 Apr 15;267(11):7745–7750. [PubMed] [Google Scholar]
  22. Walker J. L., Oliver D. J. Glycine decarboxylase multienzyme complex. Purification and partial characterization from pea leaf mitochondria. J Biol Chem. 1986 Feb 15;261(5):2214–2221. [PubMed] [Google Scholar]
  23. Yoshida T., Kikuchi G. Significance of the glycine cleavage system in glycine and serine catabolism in avian liver. Arch Biochem Biophys. 1971 Aug;145(2):658–668. doi: 10.1016/s0003-9861(71)80026-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES