Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1531–1540. doi: 10.1104/pp.112.4.1531

Structure-function relationship of monocot mannose-binding lectins.

A Barre 1, E J Van Damme 1, W J Peumans 1, P Rougé 1
PMCID: PMC158086  PMID: 8972598

Abstract

The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application.

Full Text

The Full Text of this article is available as a PDF (1,010.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balzarini J., Neyts J., Schols D., Hosoya M., Van Damme E., Peumans W., De Clercq E. The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Res. 1992 Jun;18(2):191–207. doi: 10.1016/0166-3542(92)90038-7. [DOI] [PubMed] [Google Scholar]
  2. Balzarini J., Schols D., Neyts J., Van Damme E., Peumans W., De Clercq E. Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob Agents Chemother. 1991 Mar;35(3):410–416. doi: 10.1128/aac.35.3.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbieri L., Battelli M. G., Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):237–282. doi: 10.1016/0304-4157(93)90002-6. [DOI] [PubMed] [Google Scholar]
  4. Bourne Y., Rougé P., Cambillau C. X-ray structure of a biantennary octasaccharide-lectin complex refined at 2.3-A resolution. J Biol Chem. 1992 Jan 5;267(1):197–203. [PubMed] [Google Scholar]
  5. Crawford L. V., Pim D. C., Gurney E. G., Goodfellow P., Taylor-Papadimitriou J. Detection of a common feature in several human tumor cell lines--a 53,000-dalton protein. Proc Natl Acad Sci U S A. 1981 Jan;78(1):41–45. doi: 10.1073/pnas.78.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dill K., Olson J. D. Picogram detection levels of asialofetuin via the carbohydrate moieties using the light addressable potentiometric sensor. Glycoconj J. 1995 Oct;12(5):660–663. doi: 10.1007/BF00731262. [DOI] [PubMed] [Google Scholar]
  7. Drickamer K. Multiplicity of lectin-carbohydrate interactions. Nat Struct Biol. 1995 Jun;2(6):437–439. doi: 10.1038/nsb0695-437. [DOI] [PubMed] [Google Scholar]
  8. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  9. Hester G., Kaku H., Goldstein I. J., Wright C. S. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol. 1995 Jun;2(6):472–479. doi: 10.1038/nsb0695-472. [DOI] [PubMed] [Google Scholar]
  10. Janin J. Surface and inside volumes in globular proteins. Nature. 1979 Feb 8;277(5696):491–492. doi: 10.1038/277491a0. [DOI] [PubMed] [Google Scholar]
  11. Kaku H., Goldstein I. J., Van Damme E. J., Peumans W. J. New mannose-specific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) bulbs. Carbohydr Res. 1992 May 22;229(2):347–353. doi: 10.1016/s0008-6215(00)90580-9. [DOI] [PubMed] [Google Scholar]
  12. Kaku H., Van Damme E. J., Peumans W. J., Goldstein I. J. Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch Biochem Biophys. 1990 Jun;279(2):298–304. doi: 10.1016/0003-9861(90)90495-k. [DOI] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  15. Peumans W. J., Van Damme E. J. Lectins as plant defense proteins. Plant Physiol. 1995 Oct;109(2):347–352. doi: 10.1104/pp.109.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saito K., Komae A., Kakuta M., van Damme E. J., Peumans W. J., Goldstein I. J., Misaki A. The alpha-mannosyl-binding lectin from leaves of the orchid twayblade (Listera ovata). Application to separation of alpha-D-mannans from alpha-D-glucans. Eur J Biochem. 1993 Oct 15;217(2):677–681. doi: 10.1111/j.1432-1033.1993.tb18293.x. [DOI] [PubMed] [Google Scholar]
  17. Sharon N., Lis H. Legume lectins--a large family of homologous proteins. FASEB J. 1990 Nov;4(14):3198–3208. doi: 10.1096/fasebj.4.14.2227211. [DOI] [PubMed] [Google Scholar]
  18. Shibuya N., Goldstein I. J., Van Damme E. J., Peumans W. J. Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem. 1988 Jan 15;263(2):728–734. [PubMed] [Google Scholar]
  19. Shinohara Y., Kim F., Shimizu M., Goto M., Tosu M., Hasegawa Y. Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance. Eur J Biochem. 1994 Jul 1;223(1):189–194. doi: 10.1111/j.1432-1033.1994.tb18982.x. [DOI] [PubMed] [Google Scholar]
  20. Smeets K., Van Damme E. J., Peumans W. J. Comparative study of the post-translational processing of the mannose-binding lectins in the bulbs of garlic (Allium sativum L.) and ramsons (Allium ursinum L.). Glycoconj J. 1994 Aug;11(4):309–320. doi: 10.1007/BF00731204. [DOI] [PubMed] [Google Scholar]
  21. Sturm A., Bergwerff A. A., Vliegenthart J. F. 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur J Biochem. 1992 Feb 15;204(1):313–316. doi: 10.1111/j.1432-1033.1992.tb16639.x. [DOI] [PubMed] [Google Scholar]
  22. Thornton J. M., Edwards M. S., Taylor W. R., Barlow D. J. Location of 'continuous' antigenic determinants in the protruding regions of proteins. EMBO J. 1986 Feb;5(2):409–413. doi: 10.1002/j.1460-2075.1986.tb04226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Damme E. J., Balzarini J., Smeets K., Van Leuven F., Peumans W. J. The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: sequence homologies and differences in biological activities. Glycoconj J. 1994 Aug;11(4):321–332. doi: 10.1007/BF00731205. [DOI] [PubMed] [Google Scholar]
  24. Van Damme E. J., Barre A., Rougé P., Van Leuven F., Balzarini J., Peumans W. J. Molecular cloning of the lectin and a lectin-related protein from common Solomon's seal (Polygonatum multiflorum). Plant Mol Biol. 1996 Jun;31(3):657–672. doi: 10.1007/BF00042237. [DOI] [PubMed] [Google Scholar]
  25. Van Damme E. J., Goossens K., Smeets K., Van Leuven F., Verhaert P., Peumans W. J. The major tuber storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol. 1995 Apr;107(4):1147–1158. doi: 10.1104/pp.107.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Damme E. J., Kaku H., Perini F., Goldstein I. J., Peeters B., Yagi F., Decock B., Peumans W. J. Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur J Biochem. 1991 Nov 15;202(1):23–30. doi: 10.1111/j.1432-1033.1991.tb16339.x. [DOI] [PubMed] [Google Scholar]
  27. Van Damme E. J., Smeets K., Engelborghs I., Aelbers H., Balzarini J., Pusztai A., van Leuven F., Goldstein I. J., Peumans W. J. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol Biol. 1993 Oct;23(2):365–376. doi: 10.1007/BF00029011. [DOI] [PubMed] [Google Scholar]
  28. Van Damme J. M., Smeets K., Torrekens S., Van Leuven F., Peumans W. J. The mannose-specific lectins from ramsons (Allium ursinum L.) are encoded by three sets of genes. Eur J Biochem. 1993 Oct 1;217(1):123–129. doi: 10.1111/j.1432-1033.1993.tb18226.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES