Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1541–1550. doi: 10.1104/pp.112.4.1541

Changes in Calcium-Dependent Protein Kinase Activity during in Vitro Tuberization in Potato.

G C MacIntosh 1, R M Ulloa 1, M Raices 1, M T Tellez-Inon 1
PMCID: PMC158087  PMID: 12226463

Abstract

A soluble Ca2+-dependent protein kinase (CDPK) was purified to homogeneity in potato (Solanum tuberosum L.) plants. Potato CDPK was strictly dependent on Ca2+ (one-half maximal activation 0.6 [mu]M) and phosphorylated a wide diversity of substrates, in which Syntide 2 was the best phosphate acceptor (Michaelis constant = 30 [mu]M). The kinase was inhibited by Ca2+-chelating agents, phenotiazine derivatives, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (one-half maximal inhibition = 0.25 mM). Polyclonal antibodies directed against the regulatory region of the soybean CDPK recognized a 53-kD polypeptide. In an autophosphorylation assay, this same band was strongly labeled with [[gamma]-32P]ATP in the presence of Ca2+. CDPK activity was high in nontuberized plants, but increased 2.5-fold at the onset of tuber development and was reduced to one-half of its original activity when the tuber had completed formation. In the early stages of tuberization, Ca2+-dependent phosphorylation of endogenous targets (specific bands of 68, 51, and 46 kD) was observed. These polypeptides were not labeled in nontuberizing plants or in completely formed tubers, indicating that this phosphorylation is a stage-specific event. In addition, dephosphorylation of specific polypeptides was detected in tuberizing plants, suggesting the involvement of a phosphatase. Preincubation of crude extracts with phosphatase inhibitors rendered a 100% increase in CDPK activity.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann M., Shiraishi N., Campbell W. H., Yoo B. C., Harmon A. C., Huber S. C. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell. 1996 Mar;8(3):505–517. doi: 10.1105/tpc.8.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battey N. H. Calcium-activated protein kinase from soluble and membrane fractions of maize coleoptiles. Biochem Biophys Res Commun. 1990 Jul 16;170(1):17–22. doi: 10.1016/0006-291x(90)91234-j. [DOI] [PubMed] [Google Scholar]
  3. Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci. 1992 Oct;17(10):408–413. doi: 10.1016/0968-0004(92)90010-7. [DOI] [PubMed] [Google Scholar]
  4. Cole K. P., Blakeley S. D., Dennis D. T. Structure of the gene encoding potato cytosolic pyruvate kinase. Gene. 1992 Dec 15;122(2):255–261. doi: 10.1016/0378-1119(92)90213-9. [DOI] [PubMed] [Google Scholar]
  5. Cyr R. J., Palevitz B. A. Organization of cortical microtubules in plant cells. Curr Opin Cell Biol. 1995 Feb;7(1):65–71. doi: 10.1016/0955-0674(95)80046-8. [DOI] [PubMed] [Google Scholar]
  6. Harmon A. C., Putnam-Evans C., Cormier M. J. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. 1987 Apr;83(4):830–837. doi: 10.1104/pp.83.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hendriks T., Vreugdenhil D., Stiekema W. J. Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development. Plant Mol Biol. 1991 Sep;17(3):385–394. doi: 10.1007/BF00040633. [DOI] [PubMed] [Google Scholar]
  8. Hidaka H., Tanaka T. Naphthalenesulfonamides as calmodulin antagonists. Methods Enzymol. 1983;102:185–194. doi: 10.1016/s0076-6879(83)02019-4. [DOI] [PubMed] [Google Scholar]
  9. Kawasaki T., Hayashida N., Baba T., Shinozaki K., Shimada H. The gene encoding a calcium-dependent protein kinase located near the sbe1 gene encoding starch branching enzyme I is specifically expressed in developing rice seeds. Gene. 1993 Jul 30;129(2):183–189. doi: 10.1016/0378-1119(93)90267-7. [DOI] [PubMed] [Google Scholar]
  10. LELOIR L. F., GOLDEMBERG S. H. Synthesis of glycogen from uridine diphosphate glucose in liver. J Biol Chem. 1960 Apr;235:919–923. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Ma H. Protein phosphorylation in plants: enzymes, substrates and regulators. Trends Genet. 1993 Jul;9(7):228–230. doi: 10.1016/0168-9525(93)90075-s. [DOI] [PubMed] [Google Scholar]
  13. Ochatt C. M., Ulloa R. M., Torres H. N., Téllez-Iñn M. T. Characterization of the catalytic subunit of Trypanosoma cruzi cyclic AMP-dependent protein kinase. Mol Biochem Parasitol. 1993 Jan;57(1):73–81. doi: 10.1016/0166-6851(93)90245-s. [DOI] [PubMed] [Google Scholar]
  14. Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
  15. Putnam-Evans C. L., Harmon A. C., Cormier M. J. Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry. 1990 Mar 13;29(10):2488–2495. doi: 10.1021/bi00462a008. [DOI] [PubMed] [Google Scholar]
  16. Roberts D. M., Weaver C. D. How plants respond to stimuli. The Ninth Annual Symposium on Current Topics in Plant Biochemistry and Physiology sponsored by the University of Missouri Interdisciplinary Program in Plant Biochemistry and Physiology, the US Department of Agriculture, and the National Science Foundation, Columbia, MO, USA, April 4-7, 1990. New Biol. 1990 Aug;2(8):678–683. [PubMed] [Google Scholar]
  17. Taylor M. A., Arif S. A., Kumar A., Davies H. V., Scobie L. A., Pearce S. R., Flavell A. J. Expression and sequence analysis of cDNAs induced during the early stages of tuberisation in different organs of the potato plant (Solanum tuberosum L.). Plant Mol Biol. 1992 Nov;20(4):641–651. doi: 10.1007/BF00046449. [DOI] [PubMed] [Google Scholar]
  18. Téllez-Iñn M. T., Ulloa R. M., Glikin G. C., Torres H. N. Characterization of Neurospora crassa cyclic AMP phosphodiesterase activated by calmodulin. Biochem J. 1985 Dec 1;232(2):425–430. doi: 10.1042/bj2320425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ulloa R. M., Glikin G. C., Téllez-Iñn M. T., Torres H. N., Judewicz N. D. A novel stimulator of protein phosphorylation in Neurospora crassa. Mol Cell Biochem. 1987 Sep;77(1):11–17. doi: 10.1007/BF00230146. [DOI] [PubMed] [Google Scholar]
  20. Ulloa R. M., Torres H. N., Ochatt C. M., Téllez-Iñn M. T. Ca2+ calmodulin-dependent protein kinase activity in the ascomycetes Neurospora crassa. Mol Cell Biochem. 1991 Apr 10;102(2):155–163. doi: 10.1007/BF00234573. [DOI] [PubMed] [Google Scholar]
  21. Yuasa T., Muto S. Ca(2+)-dependent protein kinase from the halotolerant green alga Dunaliella tertiolecta: partial purification and Ca(2+)-dependent association of the enzyme to the microsomes. Arch Biochem Biophys. 1992 Jul;296(1):175–182. doi: 10.1016/0003-9861(92)90560-j. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES