Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1625–1630. doi: 10.1104/pp.112.4.1625

Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis.

M Lorenzen 1, V Racicot 1, D Strack 1, C Chapple 1
PMCID: PMC158096  PMID: 8972602

Abstract

Sinapoylmalate is one of the major phenylpropanoid metabolites that is accumulated in the vegetative tissue of Arabidopsis thaliana. A thin-layer chromatography-based mutant screen identified two allelic mutant lines that accumulated sinapoylglucose in their leaves in place of sinapoylmalate. Both mutations were found to be recessive and segregated as single Mendelian genes. These mutants define a new locus called SNG1 for sinapoylglucose accumulator. Plants that are homozygous for the sng1 mutation accumulate normal levels of malate in their leaves but lack detectable levels of the final enzyme in sinapate ester biosynthesis, sinapoylglucose:malate sinapoyltransferase. A study of wild-type and sng1 seedlings found that sinapic acid ester biosynthesis in Arabidopsis is developmentally regulated and that the accumulation of sinapate esters is delayed in sng1 mutant seedlings.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chapple C. C., Vogt T., Ellis B. E., Somerville C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell. 1992 Nov;4(11):1413–1424. doi: 10.1105/tpc.4.11.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Landry L. G., Chapple C. C., Last R. L. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol. 1995 Dec;109(4):1159–1166. doi: 10.1104/pp.109.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Meyer K., Cusumano J. C., Somerville C., Chapple C. C. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6869–6874. doi: 10.1073/pnas.93.14.6869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Reiter W. D., Chapple C. C., Somerville C. R. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science. 1993 Aug 20;261(5124):1032–1035. doi: 10.1126/science.261.5124.1032. [DOI] [PubMed] [Google Scholar]
  7. Shirley B. W., Hanley S., Goodman H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 1992 Mar;4(3):333–347. doi: 10.1105/tpc.4.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shirley B. W., Kubasek W. L., Storz G., Bruggemann E., Koornneef M., Ausubel F. M., Goodman H. M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995 Nov;8(5):659–671. doi: 10.1046/j.1365-313x.1995.08050659.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES