Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1669–1677. doi: 10.1104/pp.112.4.1669

Molecular characterization of berberine bridge enzyme genes from opium poppy.

P J Facchini 1, C Penzes 1, A G Johnson 1, D Bull 1
PMCID: PMC158100  PMID: 8972604

Abstract

In Papaver somniferum (opium poppy) and related species, (S)-reticuline serves as a branch-point intermediate in the biosynthesis of numerous isoquinoline alkaloids. The berberine bridge enzyme (BBE) ([S]-reticuline:oxygen oxidoreductase [methylene bridge forming], EC 1.5.3.9) catalyzes the stereospecific conversion of the N-methyl moiety of (S)-reticuline into the berberine bridge carbon of (S)-scoulerine and represents the first committed step in the pathway leading to the antimicrobial alkaloid sanguinarine. Three unique genomic clones (bbe1, bbe2, and bbe3) similar to a BBE cDNA from Eschscholtzia californica (California poppy) were isolated from opium poppy. Two clones (bbe2 and bbe3) contained frame-shift mutations of which bbe2 was identified as a putative, nonexpressed pseudogene by RNA blot hybridization using a gene-specific probe and by the lack of transient expression of a chimeric gene fusion between the bbe2 5' flanking region and a beta-glucuronidase reporter gene. Similarly, bbe1 was shown to be expressed in opium poppy plants and cultured cells. Genomic DNA blot-hybridization data were consistent with a limited number of bbe homologs. RNA blot hybridization showed that bbe genes are expressed in roots and stems of mature plants and in seedlings within 3 d after germination. Rapid and transient BBE mRNA accumulation also occurred after treatment with a fungal elicitor or with methyl jasmonate. However, sanguinarine was found only in roots, seedlings, and fungal elicitor-treated cell cultures.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. August P. R., Flickinger M. C., Sherman D. H. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae. J Bacteriol. 1994 Jul;176(14):4448–4454. doi: 10.1128/jb.176.14.4448-4454.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blechert S., Brodschelm W., Hölder S., Kammerer L., Kutchan T. M., Mueller M. J., Xia Z. Q., Zenk M. H. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4099–4105. doi: 10.1073/pnas.92.10.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brandsch R., Bichler V. In vivo and in vitro expression of the 6-hydroxy-D-nicotine oxidase gene of Arthrobacter oxidans, cloned into Escherichia coli, as an enzymatically active, covalently flavinylated polypeptide. FEBS Lett. 1985 Nov 18;192(2):204–208. doi: 10.1016/0014-5793(85)80108-3. [DOI] [PubMed] [Google Scholar]
  5. Brandsch R., Hinkkanen A. E., Mauch L., Nagursky H., Decker K. 6-Hydroxy-D-nicotine oxidase of Arthrobacter oxidans. Gene structure of the flavoenzyme and its relationship to 6-hydroxy-L-nicotine oxidase. Eur J Biochem. 1987 Sep 1;167(2):315–320. doi: 10.1111/j.1432-1033.1987.tb13338.x. [DOI] [PubMed] [Google Scholar]
  6. Brownstein M. J. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5391–5393. doi: 10.1073/pnas.90.12.5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dzink J. L., Socransky S. S. Comparative in vitro activity of sanguinarine against oral microbial isolates. Antimicrob Agents Chemother. 1985 Apr;27(4):663–665. doi: 10.1128/aac.27.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Facchini P. J., De Luca V. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem. 1994 Oct 28;269(43):26684–26690. [PubMed] [Google Scholar]
  9. Facchini P. J., De Luca V. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy. Plant Cell. 1995 Nov;7(11):1811–1821. doi: 10.1105/tpc.7.11.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Facchini P. J., Johnson A. G., Poupart J., de Luca V. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiol. 1996 Jul;111(3):687–697. doi: 10.1104/pp.111.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  12. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koshizaka T., Nishikimi M., Ozawa T., Yagi K. Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis. J Biol Chem. 1988 Feb 5;263(4):1619–1621. [PubMed] [Google Scholar]
  14. Kutchan T. M., Bock A., Dittrich H. Heterologous expression of the plant proteins strictosidine synthase and berberine bridge enzyme in insect cell culture. Phytochemistry. 1994 Jan;35(2):353–360. doi: 10.1016/s0031-9422(00)94763-0. [DOI] [PubMed] [Google Scholar]
  15. Kutchan T. M., Dittrich H. Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J Biol Chem. 1995 Oct 13;270(41):24475–24481. doi: 10.1074/jbc.270.41.24475. [DOI] [PubMed] [Google Scholar]
  16. Maldonado-Mendoza I. E., López-Meyer M., Galef J. R., Burnett R. J., Nessler C. L. Molecular analysis of a new member of the opium poppy tyrosine/3,4-dihydroxyphenylalanine decarboxylase gene family. Plant Physiol. 1996 Jan;110(1):43–49. doi: 10.1104/pp.110.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rink E., Böhm H. Conversion of reticuline into scoulerine by a cell free preparation from Macleaya microcarpa cell suspension cultures. FEBS Lett. 1975 Jan 1;49(3):396–399. doi: 10.1016/0014-5793(75)80794-0. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES