Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Dec;112(4):1723–1733. doi: 10.1104/pp.112.4.1723

Total Glutamine Synthetase Activity during Soybean Nodule Development Is Controlled at the Level of Transcription and Holoprotein Turnover.

S J Temple 1, S Kunjibettu 1, D Roche 1, C Sengupta-Gopalan 1
PMCID: PMC158106  PMID: 12226474

Abstract

Gln synthetase (GS) catalyzes the ATP-dependent condensation of ammonia with glutamate to yield Gln. In higher plants GS is an octameric enzyme and the subunits are encoded by members of a small multigene family. In soybeans (Glycine max), following the onset of N2 fixation there is a dramatic increase in GS activity in the root nodules. GS activity staining of native polyacrylamide gels containing nodule and root extracts showed a common band of activity (GSrs). The nodules also contained a slower-migrating, broad band of enzyme activity (GSns). The GSns activity band is a complex of many isozymes made up of different proportions of two kinds of GS subunits: GSr and GSn. Root nodules formed following inoculation with an Nif- strain of Bradyrhizobium japonicum showed the presence of GS isoenzymes (GSns1) with low enzyme activity, which migrated more slowly than GSns. Gsns1 is most likely made up predominantly of GSn subunits. Our data suggest that, whereas the class I GS genes encoding the GSr subunits are regulated by the availability of NH3, the class II GS genes coding for the GSn subunits are developmentally regulated. Furthermore, we have demonstrated that the GSns1 isozymes in the Nif- nodules are relatively more labile. Our overall conclusion is that GSns activity in soybean nodules is regulated by N2 fixation both at the level of transcription and at the level of holoprotein stability.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Cai X., Wong P. P. Subunit Composition of Glutamine Synthetase Isozymes from Root Nodules of Bean (Phaseolus vulgaris L.). Plant Physiol. 1989 Nov;91(3):1056–1062. doi: 10.1104/pp.91.3.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  4. Ferguson A. R., Sims A. P. Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: its role in the regulation of glutamine synthesis in yeasts. J Gen Microbiol. 1971 Dec;69(3):423–427. doi: 10.1099/00221287-69-3-423. [DOI] [PubMed] [Google Scholar]
  5. Fisher M. T. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry. 1992 Apr 28;31(16):3955–3963. doi: 10.1021/bi00131a010. [DOI] [PubMed] [Google Scholar]
  6. Forde B. G., Day H. M., Turton J. F., Shen W. J., Cullimore J. V., Oliver J. E. Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell. 1989 Apr;1(4):391–401. doi: 10.1105/tpc.1.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fulks R. M., Stadtman E. R. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes. Biochim Biophys Acta. 1985 Dec 13;843(3):214–229. doi: 10.1016/0304-4165(85)90142-4. [DOI] [PubMed] [Google Scholar]
  8. Hemon P., Robbins M. P., Cullimore J. V. Targeting of glutamine synthetase to the mitochondria of transgenic tobacco. Plant Mol Biol. 1990 Dec;15(6):895–904. doi: 10.1007/BF00039428. [DOI] [PubMed] [Google Scholar]
  9. Langston-Unkefer P. J., Robinson A. C., Knight T. J., Durbin R. D. Inactivation of pea seed glutamine synthetase by the toxin, tabtoxinine-beta-lactam. J Biol Chem. 1987 Feb 5;262(4):1608–1613. [PubMed] [Google Scholar]
  10. Levine R. L. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J Biol Chem. 1983 Oct 10;258(19):11823–11827. [PubMed] [Google Scholar]
  11. Limón-Lason J., Lara M., Resendiz B., Mora J. Regulation of glutamine synthetase in fed-batch cultures of Neurospora crassa. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1234–1240. doi: 10.1016/0006-291x(77)91425-5. [DOI] [PubMed] [Google Scholar]
  12. Lubben T. H., Donaldson G. K., Viitanen P. V., Gatenby A. A. Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell. 1989 Dec;1(12):1223–1230. doi: 10.1105/tpc.1.12.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marsolier M. C., Debrosses G., Hirel B. Identification of several soybean cytosolic glutamine synthetase transcripts highly or specifically expressed in nodules: expression studies using one of the corresponding genes in transgenic Lotus corniculatus. Plant Mol Biol. 1995 Jan;27(1):1–15. doi: 10.1007/BF00019174. [DOI] [PubMed] [Google Scholar]
  14. Meek T. D., Villafranca J. J. Kinetic mechanism of Escherichia coli glutamine synthetase. Biochemistry. 1980 Nov 25;19(24):5513–5519. doi: 10.1021/bi00565a008. [DOI] [PubMed] [Google Scholar]
  15. Miao G. H., Hirel B., Marsolier M. C., Ridge R. W., Verma D. P. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell. 1991 Jan;3(1):11–22. doi: 10.1105/tpc.3.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  17. Perdew G. H., Schaup H. W., Selivonchick D. P. The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Anal Biochem. 1983 Dec;135(2):453–455. doi: 10.1016/0003-2697(83)90711-x. [DOI] [PubMed] [Google Scholar]
  18. Rivett A. J. The multicatalytic proteinase of mammalian cells. Arch Biochem Biophys. 1989 Jan;268(1):1–8. doi: 10.1016/0003-9861(89)90558-4. [DOI] [PubMed] [Google Scholar]
  19. Roche D., Temple S. J., Sengupta-Gopalan C. Two classes of differentially regulated glutamine synthetase genes are expressed in the soybean nodule: a nodule-specific class and a constitutively expressed class. Plant Mol Biol. 1993 Sep;22(6):971–983. doi: 10.1007/BF00028970. [DOI] [PubMed] [Google Scholar]
  20. Sanangelantoni A. M., Barbarini D., Di Pasquale G., Cammarano P., Tiboni O. Cloning and nucleotide sequence of an archaebacterial glutamine synthetase gene: phylogenetic implications. Mol Gen Genet. 1990 Apr;221(2):187–194. doi: 10.1007/BF00261719. [DOI] [PubMed] [Google Scholar]
  21. Stadtman E. R. Covalent modification reactions are marking steps in protein turnover. Biochemistry. 1990 Jul 10;29(27):6323–6331. doi: 10.1021/bi00479a001. [DOI] [PubMed] [Google Scholar]
  22. Stanford A. C., Larsen K., Barker D. G., Cullimore J. V. Differential expression within the glutamine synthetase gene family of the model legume Medicago truncatula. Plant Physiol. 1993 Sep;103(1):73–81. doi: 10.1104/pp.103.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sukanya R., Li M. G., Snustad D. P. Root- and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. Plant Mol Biol. 1994 Dec;26(6):1935–1946. doi: 10.1007/BF00019504. [DOI] [PubMed] [Google Scholar]
  24. Temple S. J., Heard J., Ganter G., Dunn K., Sengupta-Gopalan C. Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization, and transcript analysis. Mol Plant Microbe Interact. 1995 Mar-Apr;8(2):218–227. doi: 10.1094/mpmi-8-0218. [DOI] [PubMed] [Google Scholar]
  25. Temple S. J., Knight T. J., Unkefer P. J., Sengupta-Gopalan C. Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis. Mol Gen Genet. 1993 Jan;236(2-3):315–325. doi: 10.1007/BF00277128. [DOI] [PubMed] [Google Scholar]
  26. Tingey S. V., Tsai F. Y., Edwards J. W., Walker E. L., Coruzzi G. M. Chloroplast and cytosolic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo. J Biol Chem. 1988 Jul 15;263(20):9651–9657. [PubMed] [Google Scholar]
  27. Tingey S. V., Walker E. L., Coruzzi G. M. Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J. 1987 Jan;6(1):1–9. doi: 10.1002/j.1460-2075.1987.tb04710.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsuprun V. L., Boekema E. J., Pushkin A. V., Tagunova I. V. Electron microscopy and image analysis of the GroEL-like protein and its complexes with glutamine synthetase from pea leaves. Biochim Biophys Acta. 1992 Jan 30;1099(1):67–73. [PubMed] [Google Scholar]
  29. Walker E. L., Coruzzi G. M. Developmentally Regulated Expression of the Gene Family for Cytosolic Glutamine Synthetase in Pisum sativum. Plant Physiol. 1989 Oct;91(2):702–708. doi: 10.1104/pp.91.2.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamashita M. M., Almassy R. J., Janson C. A., Cascio D., Eisenberg D. Refined atomic model of glutamine synthetase at 3.5 A resolution. J Biol Chem. 1989 Oct 25;264(30):17681–17690. doi: 10.2210/pdb2gls/pdb. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES