Abstract
The intercellular washing fluid (IWF) from leaves of sugar beet (Beta vulgaris L.) contains a number of proteins exhibiting in vitro antifungal activity against the devastating leaf pathogen Cercospora beticola (Sacc.). Among these, a potent antifungal peptide, designated IWF4, was identified. The 30-amino-acid residue sequence of IWF4 is rich in cysteines (6) and glycines (7) and has a highly basic isoelectric point. IWF4 shows homology to the chitin-binding (hevein) domain of chitin-binding proteins, e.g. class I and IV chitinases. Accordingly, IWF4 has a strong affinity to chitin. Notably, it binds chitin more strongly than the chitin-binding chitinases. A full-length IWF4 cDNA clone was obtained that codes for a preproprotein of 76 amino acids containing an N-terminal putative signal peptide of 21 residues, followed by the mature IWF4 peptide of 30 residues, and an acidic C-terminal extension of 25 residues. IWF4 mRNA is expressed in the aerial parts of the plant only, with a constitutive expression in young and mature leaves and in young flowers. No induced expression of IWF4 protein or mRNA was detected during infection with C. beticola or after treatment with 2,6-dichloroisonicotinic acid, a well-known inducer of resistance in plants.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barkholt V., Jensen A. L. Amino acid analysis: determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal Biochem. 1989 Mar;177(2):318–322. doi: 10.1016/0003-2697(89)90059-6. [DOI] [PubMed] [Google Scholar]
- Bednarek S. Y., Raikhel N. V. Intracellular trafficking of secretory proteins. Plant Mol Biol. 1992 Oct;20(1):133–150. doi: 10.1007/BF00029156. [DOI] [PubMed] [Google Scholar]
- Beintema J. J. Structural features of plant chitinases and chitin-binding proteins. FEBS Lett. 1994 Aug 22;350(2-3):159–163. doi: 10.1016/0014-5793(94)00753-5. [DOI] [PubMed] [Google Scholar]
- Berglund L., Brunstedt J., Nielsen K. K., Chen Z., Mikkelsen J. D., Marcker K. A. A proline-rich chitinase from Beta vulgaris. Plant Mol Biol. 1995 Jan;27(1):211–216. doi: 10.1007/BF00019193. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Broekaert W. F., Mariën W., Terras F. R., De Bolle M. F., Proost P., Van Damme J., Dillen L., Claeys M., Rees S. B., Vanderleyden J. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry. 1992 May 5;31(17):4308–4314. doi: 10.1021/bi00132a023. [DOI] [PubMed] [Google Scholar]
- Broekaert W. F., Terras F. R., Cammue B. P., Osborn R. W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995 Aug;108(4):1353–1358. doi: 10.1104/pp.108.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broekaert W. F., VAN Parijs J., Leyns F., Joos H., Peumans W. J. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science. 1989 Sep 8;245(4922):1100–1102. doi: 10.1126/science.245.4922.1100. [DOI] [PubMed] [Google Scholar]
- Cammue B. P., De Bolle M. F., Schoofs H. M., Terras F. R., Thevissen K., Osborn R. W., Rees S. B., Broekaert W. F. Gene-encoded antimicrobial peptides from plants. Ciba Found Symp. 1994;186:91–106. doi: 10.1002/9780470514658.ch6. [DOI] [PubMed] [Google Scholar]
- Collinge D. B., Kragh K. M., Mikkelsen J. D., Nielsen K. K., Rasmussen U., Vad K. Plant chitinases. Plant J. 1993 Jan;3(1):31–40. doi: 10.1046/j.1365-313x.1993.t01-1-00999.x. [DOI] [PubMed] [Google Scholar]
- De Bolle M. F., David K. M., Rees S. B., Vanderleyden J., Cammue B. P., Broekaert W. F. Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus. Plant Mol Biol. 1993 Sep;22(6):1187–1190. doi: 10.1007/BF00028991. [DOI] [PubMed] [Google Scholar]
- Florack D. E., Dirkse W. G., Visser B., Heidekamp F., Stiekema W. J. Expression of biologically active hordothionins in tobacco. Effects of pre- and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting. Plant Mol Biol. 1994 Jan;24(1):83–96. doi: 10.1007/BF00040576. [DOI] [PubMed] [Google Scholar]
- Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legrand M., Kauffmann S., Geoffroy P., Fritig B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6750–6754. doi: 10.1073/pnas.84.19.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcussen J., Poulsen C. A nondestructive method for peptide bond conjugation of antigenic haptens to a diphtheria toxoid carrier, exemplified by two antisera specific to acetolactate synthase. Anal Biochem. 1991 Nov 1;198(2):318–323. doi: 10.1016/0003-2697(91)90432-s. [DOI] [PubMed] [Google Scholar]
- Molano J., Durán A., Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. doi: 10.1016/0003-2697(77)90069-0. [DOI] [PubMed] [Google Scholar]
- Nakamura K., Matsuoka K. Protein targeting to the vacuole in plant cells. Plant Physiol. 1993 Jan;101(1):1–5. doi: 10.1104/pp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen K. K., Bojsen K., Roepstorff P., Mikkelsen J. D. A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose. Plant Mol Biol. 1994 May;25(2):241–257. doi: 10.1007/BF00023241. [DOI] [PubMed] [Google Scholar]
- Nielsen K. K., Mikkelsen J. D., Kragh K. M., Bojsen K. An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):495–506. doi: 10.1094/mpmi-6-495. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van Den Elzen PJM., Cornelissen BJC. Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity. Plant Physiol. 1993 Mar;101(3):857–863. doi: 10.1104/pp.101.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinshi H., Neuhas J. M., Ryals J., Meins F., Jr Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol. 1990 Mar;14(3):357–368. doi: 10.1007/BF00028772. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]