Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jan;113(1):93–102. doi: 10.1104/pp.113.1.93

Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses.

K A Marrs 1, V Walbot 1
PMCID: PMC158119  PMID: 9008391

Abstract

The Bronze2 (Bz2) gene in maize (Zea mays) encodes a glutathione S-transferase that performs the last genetically defined step in anthocyanin biosynthesis--tagging anthocyanin precursors with glutathione, allowing for recognition and entry of anthocyanins into the vacuole. Here we show that Bz2 gene expression is highly induced by heavy metals such as cadmium. Treatment of maize seedlings with cadmium results in a 20-fold increase in Bz2 message accumulation and a 50-fold increase in the presence of the unspliced, intron-containing transcript. The increase in message levels during cadmium stress appears to result, at least in part, from activation of an alternative mRNA start site approximately 200 nucleotides upstream of the normal start site; this site is not used in unstressed or heat-stressed tissues. The effect of cadmium on the RNA splicing of Bz2 seems to be specific: splicing of other intron-containing maize genes, including a maize actin gene under the control of the cadmium-inducible Bz2 promoter, is unaffected by cadmium stress. Conversely, Bz2 intron splicing is not affected by other stress conditions that induce Bz2 gene expression, such as abscisic acid, auxin, or cold stress. Surprisingly, the increase in Bz2 mRNA during cadmium stress does not result in an increase in Bz2 glutathione S-transferase activity. We propose that an alternative protein may be encoded by Bz2 that has a role during responses to heavy metals.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodeau J. P., Walbot V. Regulated transcription of the maize Bronze-2 promoter in electroporated protoplasts requires the C1 and R gene products. Mol Gen Genet. 1992 Jun;233(3):379–387. doi: 10.1007/BF00265434. [DOI] [PubMed] [Google Scholar]
  2. Boot KJM., Van Der Zaal B. J., Velterop J., Quint A., Mennes A. M., Hooykaas PJJ., Libbenga K. R. Further Characterization of Expression of Auxin-Induced Genes in Tobacco (Nicotiana tabacum) Cell-Suspension Cultures. Plant Physiol. 1993 Jun;102(2):513–520. doi: 10.1104/pp.102.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Czarnecka E., Nagao R. T., Key J. L., Gurley W. B. Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol. 1988 Mar;8(3):1113–1122. doi: 10.1128/mcb.8.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Droog F. N., Hooykaas P. J., Libbenga K. R., van der Zaal E. J. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol. 1993 Mar;21(6):965–972. doi: 10.1007/BF00023595. [DOI] [PubMed] [Google Scholar]
  5. Droog FNJ., Hooykaas PJJ., Van Der Zaal B. J. 2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases. Plant Physiol. 1995 Apr;107(4):1139–1146. doi: 10.1104/pp.107.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grill E., Winnacker E. L., Zenk M. H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 1985 Nov 8;230(4726):674–676. doi: 10.1126/science.230.4726.674. [DOI] [PubMed] [Google Scholar]
  7. Hagen G., Uhrhammer N., Guilfoyle T. J. Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem. 1988 May 5;263(13):6442–6446. [PubMed] [Google Scholar]
  8. Hahn K., Strittmatter G. Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem. 1994 Dec 1;226(2):619–626. doi: 10.1111/j.1432-1033.1994.tb20088.x. [DOI] [PubMed] [Google Scholar]
  9. Howden R., Andersen C. R., Goldsbrough P. B., Cobbett C. S. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 1995 Apr;107(4):1067–1073. doi: 10.1104/pp.107.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992 Nov;17(11):463–468. doi: 10.1016/0968-0004(92)90489-v. [DOI] [PubMed] [Google Scholar]
  11. Klein T. M., Roth B. A., Fromm M. E. Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6681–6685. doi: 10.1073/pnas.86.17.6681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  13. Li Z. S., Zhao Y., Rea P. A. Magnesium Adenosine 5[prime]-Triphosphate-Energized Transport of Glutathione-S-Conjugates by Plant Vacuolar Membrane Vesicles. Plant Physiol. 1995 Apr;107(4):1257–1268. doi: 10.1104/pp.107.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mannervik B., Guthenberg C. Glutathione transferase (human placenta). Methods Enzymol. 1981;77:231–235. doi: 10.1016/s0076-6879(81)77030-7. [DOI] [PubMed] [Google Scholar]
  15. Marrs K. A., Alfenito M. R., Lloyd A. M., Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature. 1995 Jun 1;375(6530):397–400. doi: 10.1038/375397a0. [DOI] [PubMed] [Google Scholar]
  16. Marrs Kathleen A. THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):127–158. doi: 10.1146/annurev.arplant.47.1.127. [DOI] [PubMed] [Google Scholar]
  17. Mauch F., Dudler R. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol. 1993 Aug;102(4):1193–1201. doi: 10.1104/pp.102.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moore R. E., Davies M. S., O'Connell K. M., Harding E. I., Wiegand R. C., Tiemeier D. C. Cloning and expression of a cDNA encoding a maize glutathione-S-transferase in E. coli. Nucleic Acids Res. 1986 Sep 25;14(18):7227–7235. doi: 10.1093/nar/14.18.7227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nash J., Luehrsen K. R., Walbot V. Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing. Plant Cell. 1990 Nov;2(11):1039–1049. doi: 10.1105/tpc.2.11.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rauser W. E., Meuwly P. Retention of cadmium in roots of maize seedlings. Role of complexation by phytochelatins and related thiol peptides. Plant Physiol. 1995 Sep;109(1):195–202. doi: 10.1104/pp.109.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rauser W. E. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol. 1995 Dec;109(4):1141–1149. doi: 10.1104/pp.109.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
  23. Shah D. M., Hightower R. C., Meagher R. B. Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J Mol Appl Genet. 1983;2(1):111–126. [PubMed] [Google Scholar]
  24. Takahashi Y., Kusaba M., Hiraoka Y., Nagata T. Characterization of the auxin-regulated par gene from tobacco mesophyll protoplasts. Plant J. 1991 Nov;1(3):327–332. doi: 10.1046/j.1365-313x.1991.t01-2-00999.x. [DOI] [PubMed] [Google Scholar]
  25. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  26. Taylor J. L., Fritzemeier K. H., Häuser I., Kombrink E., Rohwer F., Schröder M., Strittmatter G., Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact. 1990 Mar-Apr;3(2):72–77. [PubMed] [Google Scholar]
  27. Tenhaken R., Levine A., Brisson L. F., Dixon R. A., Lamb C. Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4158–4163. doi: 10.1073/pnas.92.10.4158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ulmasov T., Hagen G., Guilfoyle T. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol. 1994 Nov;26(4):1055–1064. doi: 10.1007/BF00040688. [DOI] [PubMed] [Google Scholar]
  29. Ulmasov T., Liu Z. B., Hagen G., Guilfoyle T. J. Composite structure of auxin response elements. Plant Cell. 1995 Oct;7(10):1611–1623. doi: 10.1105/tpc.7.10.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vögeli-Lange R., Wagner G. J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves : implication of a transport function for cadmium-binding peptides. Plant Physiol. 1990 Apr;92(4):1086–1093. doi: 10.1104/pp.92.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wingate V. P., Lawton M. A., Lamb C. J. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 1988 May;87(1):206–210. doi: 10.1104/pp.87.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van der Zaal E. J., Droog F. N., Boot C. J., Hensgens L. A., Hoge J. H., Schilperoort R. A., Libbenga K. R. Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol. 1991 Jun;16(6):983–998. doi: 10.1007/BF00016071. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES