Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jan;113(1):127–135. doi: 10.1104/pp.113.1.127

Reexamination of the Intracellular Localization of de Novo Purine Synthesis in Cowpea Nodules.

C A Atkins 1, PMC Smith 1, P J Storer 1
PMCID: PMC158123  PMID: 12223595

Abstract

Sucrose and Percoll density gradient centrifugation were used to separate organelles from the central zone tissue of cowpea (Vigna unguiculata L. Walp. cv Vita 3: Bradyrhizobium strain CB 756) nodules. Enzyme activity analysis has shown that both plastids and mitochondria have a full complement of enzymes for de novo purine synthesis. In vitro activities of individual component enzymes (glycinamide ribonucleotide synthetase, EC 6.3.4.13; glycinamide ribonucleotide transformylase, EC 2.1.2.2; aminoimidazole ribonucleotide synthetase, EC 6.3.3.1; aminoimidazole carboxamide ribonucleotide transformylase, EC 6.3.2.6; and adenylosuccinate-AMP lyase, EC 4.3.2.2) as well as of the whole purine pathway (from ribose-5-phosphate to inosine monophosphate) were similar in the two organelles. No significant cytosolic or bacteroidal activity of any of the purine pathway enzymes was detected on assay. These findings are contrary to earlier studies (M.J. Boland, K.R. Schubert [1983] Arch Biochem Biophys 220: 179-187; B.J. Shelp C.A. Atkins, P.J. Storer, D.T. Canvin [1983] Arch Biochem Biophys 224: 429-441) that concluded that enhanced expression of purine synthesis in nodules of ureide-forming species is localized to plastids. Significantly increased recovery of activity of key pathway enzymes (particularly of labile aminoimidazole ribonucleotide synthetase) coupled with improved assay methods and the use of Percoll in addition to sucrose for gradient centrifugation have together contributed to much higher reaction rates and more definitive analyses of particulate fractions.

Full Text

The Full Text of this article is available as a PDF (983.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins C. A., Ritchie A., Rowe P. B., McCairns E., Sauer D. De Novo Purine Synthesis in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata [L.] Walp.) and Soybean (Glycine max [L.] Merr.). Plant Physiol. 1982 Jul;70(1):55–60. doi: 10.1104/pp.70.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins C. A., Storer P. J., Pate J. S. Pathways of Nitrogen Assimilation in Cowpea Nodules Studied using N(2) and Allopurinol. Plant Physiol. 1988 Jan;86(1):204–207. doi: 10.1104/pp.86.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Claros M. G. MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci. 1995 Aug;11(4):441–447. doi: 10.1093/bioinformatics/11.4.441. [DOI] [PubMed] [Google Scholar]
  4. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  5. Dakora F. D., Atkins C. A. Adaptation of Nodulated Soybean (Glycine max L. Merr.) to Growth in Rhizospheres Containing Nonambient pO(2). Plant Physiol. 1991 Jul;96(3):728–736. doi: 10.1104/pp.96.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujihara S., Yamaguchi M. Effects of Allopurinol [4-Hydroxypyrazolo(3,4-d)Pyrimidine] on the Metabolism of Allantoin in Soybean Plants. Plant Physiol. 1978 Jul;62(1):134–138. doi: 10.1104/pp.62.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ito T., Shiraishi H., Okada K., Shimura Y. Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs. Plant Mol Biol. 1994 Oct;26(1):529–533. doi: 10.1007/BF00039565. [DOI] [PubMed] [Google Scholar]
  8. Kim J. H., Delauney A. J., Verma D. P. Control of de novo purine biosynthesis genes in ureide-producing legumes: induction of glutamine phosphoribosylpyrophosphate amidotransferase gene and characterization of its cDNA from soybean and Vigna. Plant J. 1995 Jan;7(1):77–86. doi: 10.1046/j.1365-313x.1995.07010077.x. [DOI] [PubMed] [Google Scholar]
  9. Mitchell M. K., Reynolds P. H., Blevins D. G. Serine hydroxymethyltransferase from soybean root nodules : purification and kinetic properties. Plant Physiol. 1986 Jun;81(2):553–557. doi: 10.1104/pp.81.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mueller W. T., Benkovic S. J. On the purification and mechanism of action of 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase from chicken liver. Biochemistry. 1981 Jan 20;20(2):337–344. doi: 10.1021/bi00505a017. [DOI] [PubMed] [Google Scholar]
  11. Schendel F. J., Mueller E., Stubbe J., Shiau A., Smith J. M. Formylglycinamide ribonucleotide synthetase from Escherichia coli: cloning, sequencing, overproduction, isolation, and characterization. Biochemistry. 1989 Mar 21;28(6):2459–2471. doi: 10.1021/bi00432a017. [DOI] [PubMed] [Google Scholar]
  12. Schnorr K. M., Nygaard P., Laloue M. Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes. Plant J. 1994 Jul;6(1):113–121. doi: 10.1046/j.1365-313x.1994.6010113.x. [DOI] [PubMed] [Google Scholar]
  13. Schrimsher J. L., Schendel F. J., Stubbe J. Isolation of a multifunctional protein with aminoimidazole ribonucleotide synthetase, glycinamide ribonucleotide synthetase, and glycinamide ribonucleotide transformylase activities: characterization of aminoimidazole ribonucleotide synthetase. Biochemistry. 1986 Jul 29;25(15):4356–4365. doi: 10.1021/bi00363a027. [DOI] [PubMed] [Google Scholar]
  14. Schrimsher J. L., Schendel F. J., Stubbe J., Smith J. M. Purification and characterization of aminoimidazole ribonucleotide synthetase from Escherichia coli. Biochemistry. 1986 Jul 29;25(15):4366–4371. doi: 10.1021/bi00363a028. [DOI] [PubMed] [Google Scholar]
  15. Shelp B. J., Atkins C. A., Storer P. J., Canvin D. T. Cellular and subcellular organization of pathways of ammonia assimilation and ureide synthesis in nodules of cowpea (Vigna unguiculata L. Walp.). Arch Biochem Biophys. 1983 Jul 15;224(2):429–441. doi: 10.1016/0003-9861(83)90229-1. [DOI] [PubMed] [Google Scholar]
  16. Stover P., Schirch V. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem. 1990 Aug 25;265(24):14227–14233. [PubMed] [Google Scholar]
  17. Tatum C. M., Jr, Benkovic P. A., Benkovic S. J., Potts R., Schleicher E., Floss H. G. Stereochemistry of methylene transfer involving 5,10-methylenetetrahydrofolate. Biochemistry. 1977 Mar 22;16(6):1093–1102. doi: 10.1021/bi00625a010. [DOI] [PubMed] [Google Scholar]
  18. Turner S. R., Ireland R., Morgan C., Rawsthorne S. Identification and localization of multiple forms of serine hydroxymethyltransferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoform. J Biol Chem. 1992 Jul 5;267(19):13528–13534. [PubMed] [Google Scholar]
  19. Vanlerberghe G. C., Day D. A., Wiskich J. T., Vanlerberghe A. E., McIntosh L. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). Plant Physiol. 1995 Oct;109(2):353–361. doi: 10.1104/pp.109.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zalkin H., Dixon J. E. De novo purine nucleotide biosynthesis. Prog Nucleic Acid Res Mol Biol. 1992;42:259–287. doi: 10.1016/s0079-6603(08)60578-4. [DOI] [PubMed] [Google Scholar]
  21. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES