Abstract
The photosynthetic apparatus is reorganized during acclimation to various light environments. During adaptation of plants grown under a low-light to high-light environment, the light-harvesting chlorophyll a/b-protein complexes decompose concomitantly with an increase in the core complex of photosystem II. To study the mechanisms for reorganization of photosystems, the assembly of chlorophyll with apoproteins was investigated using isolated chloroplasts. When [14C]chlorophyllide b was incubated with chloroplasts in the presence of phytyl pyrophosphate, it was esterified and some of the [14C]chlorophyll b was converted to [14C]chlorophyll a via 7-hydroxymethyl chlorophyll. [14C]Chlorophyll a and b were incorporated into chlorophyll-protein complexes. Light-harvesting chlorophyll a/b-protein complexes of PSII had a lower [14C]chlorophyll a to [14C]chlorophyll b ratio than P700-chlorophyll a-protein complexes, indicating the specific binding of chlorophyll to apoproteins in our systems. 7-Hydroxymethyl chlorophyll, an intermediate molecule from chlorophyll b to chlorophyll a, did not become assembled with any apoproteins. These results indicate that chlorophyll b is released from light-harvesting chlorophyll a/b-protein complexes of photosystem II and converted to chlorophyll a via 7-hydroxymethyl chlorophyll in the lipid bilayer and is then used for the formation of core complexes of photosystems. These mechanisms provide the fast, fine regulation of the photosynthetic apparatus during construction of photosystems.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. M. P-700 content and polypeptide profile of chlorophyll-protein complexes of spinach and barley thylakoids. Biochim Biophys Acta. 1980 Jun 10;591(1):113–126. doi: 10.1016/0005-2728(80)90225-x. [DOI] [PubMed] [Google Scholar]
- Argyroudi-Akoyunoglou J. H., Akoyunoglou A., Kalosakas K., Akoyunoglou G. Reorganization of the Photosystem II Unit in Developing Thylakoids of Higher Plants after Transfer to Darkness : Changes in Chlorophyll b, Light-Harvesting Chlorophyll Protein Content, and Grana Stacking. Plant Physiol. 1982 Nov;70(5):1242–1248. doi: 10.1104/pp.70.5.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollivar D. W., Wang S., Allen J. P., Bauer C. E. Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochemistry. 1994 Nov 1;33(43):12763–12768. doi: 10.1021/bi00209a006. [DOI] [PubMed] [Google Scholar]
- Burke J. J., Ditto C. L., Arntzen C. J. Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Arch Biochem Biophys. 1978 Apr 15;187(1):252–263. doi: 10.1016/0003-9861(78)90031-0. [DOI] [PubMed] [Google Scholar]
- Chow W. S., Melis A., Anderson J. M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7502–7506. doi: 10.1073/pnas.87.19.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dainese P., Bassi R. Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J Biol Chem. 1991 May 5;266(13):8136–8142. [PubMed] [Google Scholar]
- Delepelaire P., Chua N. H. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):111–115. doi: 10.1073/pnas.76.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichacker L. A., Soll J., Lauterbach P., Rüdiger W., Klein R. R., Mullet J. E. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem. 1990 Aug 15;265(23):13566–13571. [PubMed] [Google Scholar]
- HOLDEN M. The breakdown of chlorophyll by chlorophyllase. Biochem J. 1961 Feb;78:359–364. doi: 10.1042/bj0780359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrin D. L., Battey J. F., Greer K., Schmidt G. W. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll. J Biol Chem. 1992 Apr 25;267(12):8260–8269. [PubMed] [Google Scholar]
- Ito H., Takaichi S., Tsuji H., Tanaka A. Properties of synthesis of chlorophyll a from chlorophyll b in cucumber etioplasts. J Biol Chem. 1994 Sep 2;269(35):22034–22038. [PubMed] [Google Scholar]
- Ito H., Tanaka Y., Tsuji H., Tanaka A. Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Arch Biochem Biophys. 1993 Oct;306(1):148–151. doi: 10.1006/abbi.1993.1492. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature. 1991 Mar 14;350(6314):130–134. doi: 10.1038/350130a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lindahl M., Yang D. H., Andersson B. Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of photosystem II by a light-induced membrane-associated enzymic system. Eur J Biochem. 1995 Jul 15;231(2):503–509. doi: 10.1111/j.1432-1033.1995.tb20725.x. [DOI] [PubMed] [Google Scholar]
- Maloney M. A., Hoober J. K., Marks D. B. Kinetics of Chlorophyll Accumulation and Formation of Chlorophyll-Protein Complexes during Greening of Chlamydomonas reinhardtii y-1 at 38 degrees C. Plant Physiol. 1989 Nov;91(3):1100–1106. doi: 10.1104/pp.91.3.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell J. P., Thornber J. P., Boggs R. T. Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1233–1235. doi: 10.1073/pnas.76.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matringe M., Camadro J. M., Block M. A., Joyard J., Scalla R., Labbe P., Douce R. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem. 1992 Mar 5;267(7):4646–4651. [PubMed] [Google Scholar]
- Minami E., Shinohara K., Kuwabara T., Watanabe A. In vitro synthesis and assembly of photosystem II proteins of spinach chloroplasts. Arch Biochem Biophys. 1986 Feb 1;244(2):517–527. doi: 10.1016/0003-9861(86)90620-x. [DOI] [PubMed] [Google Scholar]
- Qian K. X., Pi K. D., Wang Y. P., Zhao M. J. Toward an implantable impeller total heart. ASAIO Trans. 1987 Jul-Sep;33(3):704–707. [PubMed] [Google Scholar]
- Rüdiger W., Benz J., Guthoff C. Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem. 1980 Aug;109(1):193–200. doi: 10.1111/j.1432-1033.1980.tb04784.x. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Kakuno T., Yamashita J., Horio T. Purification and properties of chlorophyllase from greened rye seedlings. J Biochem. 1982 Dec;92(6):1763–1773. doi: 10.1093/oxfordjournals.jbchem.a134106. [DOI] [PubMed] [Google Scholar]
- Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yalovsky S., Schuster G., Nechushtai R. The apoprotein precursor of the major light-harvesting complex of photosystem II (LHCIIb) is inserted primarily into stromal lamellae and subsequently migrates to the grana. Plant Mol Biol. 1990 May;14(5):753–764. doi: 10.1007/BF00016508. [DOI] [PubMed] [Google Scholar]