Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jan;113(1):201–208. doi: 10.1104/pp.113.1.201

Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm.

M K Morell 1, A Blennow 1, B Kosar-Hashemi 1, M S Samuel 1
PMCID: PMC158131  PMID: 9008395

Abstract

Three forms of starch branching enzyme (BE) from developing hexaploid wheat (Triticum aestivum) endosperm have been partially purified and characterized. Immunological cross-reactivities indicate that two forms (WBE-IAD, 88 kD, and WBE-IB, 87 kD) are related to the maize BE I class and that WBE-II (88 kD) is related to maize BE II. Comparison of the N-terminal sequences from WBE-IAD and WBE-II with maize and rice BEs confirms these relationships. Evidence is presented from the analysis of nullisomic-tetrasomic wheat lines demonstrating that WBE-IB is located on chromosome 7B and that the WBE-IAD fraction contains polypeptides that are encoded on chromosomes 7A and 7D. The wheat endosperm BE classes are differentially expressed during endosperm development. WBE-II is expressed at a constant level throughout mid and late endosperm development. In contrast, WBE-IAD and WBE-IB are preferentially expressed in late endosperm development. Differences are also observed in the kinetic characteristics of the enzymes. The WBE-I isoforms have a 2- to 5-fold higher affinity for amylose than does WBE-II, and the WBE-I isoforms are activated up to 5-fold by phosphorylated intermediates and inorganic phosphate, whereas WBE-II is activated only 50%. The potential implications of this activation of BE I for starch biosynthesis are discussed.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O., Arai Y. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochem Biophys Res Commun. 1991 Nov 27;181(1):87–94. doi: 10.1016/s0006-291x(05)81385-3. [DOI] [PubMed] [Google Scholar]
  2. Boyer C. D., Preiss J. Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem Biophys Res Commun. 1978 Jan 13;80(1):169–175. doi: 10.1016/0006-291x(78)91119-1. [DOI] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Burton R. A., Bewley J. D., Smith A. M., Bhattacharyya M. K., Tatge H., Ring S., Bull V., Hamilton W. D., Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 1995 Jan;7(1):3–15. doi: 10.1046/j.1365-313x.1995.07010003.x. [DOI] [PubMed] [Google Scholar]
  5. Denyer K., Sidebottom C., Hylton C. M., Smith A. M. Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J. 1993 Jul;4(1):191–198. doi: 10.1046/j.1365-313x.1993.04010191.x. [DOI] [PubMed] [Google Scholar]
  6. Fisher D. K., Boyer C. D., Hannah L. C. Starch branching enzyme II from maize endosperm. Plant Physiol. 1993 Jul;102(3):1045–1046. doi: 10.1104/pp.102.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hawker J. S., Ozbun J. L., Ozaki H., Greenberg E., Preiss J. Interaction of spinach leaf adenosine diphosphate glucose alpha-1,4-glucan alpha-4-glucosyl transferase and alpha-1,4-glucan, alpha-1,4-glucan-6-glycosyl transferase in synthesis of branched alpha-glucan. Arch Biochem Biophys. 1974 Feb;160(2):530–551. doi: 10.1016/0003-9861(74)90430-5. [DOI] [PubMed] [Google Scholar]
  8. James M. G., Robertson D. S., Myers A. M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell. 1995 Apr;7(4):417–429. doi: 10.1105/tpc.7.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jespersen H. M., MacGregor E. A., Henrissat B., Sierks M. R., Svensson B. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J Protein Chem. 1993 Dec;12(6):791–805. doi: 10.1007/BF01024938. [DOI] [PubMed] [Google Scholar]
  10. Kawasaki T., Mizuno K., Baba T., Shimada H. Molecular analysis of the gene encoding a rice starch branching enzyme. Mol Gen Genet. 1993 Feb;237(1-2):10–16. doi: 10.1007/BF00282778. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Mizuno K., Kawasaki T., Shimada H., Satoh H., Kobayashi E., Okumura S., Arai Y., Baba T. Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem. 1993 Sep 5;268(25):19084–19091. [PubMed] [Google Scholar]
  13. Mouille G., Maddelein M. L., Libessart N., Talaga P., Decq A., Delrue B., Ball S. Preamylopectin Processing: A Mandatory Step for Starch Biosynthesis in Plants. Plant Cell. 1996 Aug;8(8):1353–1366. doi: 10.1105/tpc.8.8.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Okita T. W. Is there an alternative pathway for starch synthesis? Plant Physiol. 1992 Oct;100(2):560–564. doi: 10.1104/pp.100.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES