Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jan;113(1):227–233. doi: 10.1104/pp.113.1.227

Purification of a protein phosphatase from chloroplast stroma capable of dephosphorylating the light-harvesting complex-II.

M F Hammer 1, J Markwell 1, G Sarath 1
PMCID: PMC158134  PMID: 9064687

Abstract

A protein phosphatase was purified from the stroma of Pea (Pisum sativum L.) chloroplasts that is capable of dephosphorylating synthetic phosphopeptides. Following chromatographic purification of greater than 400-fold, two-dimensional electrophoresis indicated that the stromal protein phosphatase is a 29-kD protein. A similar molecular size was determined for the protein-phosphatase activity using gel-permeation chromatography, indicating that the stromal protein phosphatase is probably a monomer. The purified enzyme was able to dephosphorylate synthetic phosphopeptides, which mimic the thylakoid light-harvesting complex II (LHC-II) N terminus, as well as LHC-II in thylakoid membranes, but did not dephosphorylate the major 64-kD phosphoprotein in the stroma. The stromal protein phosphatase did not discriminate between dephosphorylation of phosphothreonine and phosphoserine residues in synthetic peptide substrates, providing further evidence that this enzyme is distinct from the protein phosphatase localized in thylakoid membranes. The exact physiological role of the stromal protein phosphatase has yet to be determined, but it may function in the dephosphorylation of LHC-II.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleby C. A., Nicola N. A., Hurrell J. G., Leach S. J. Characterization and improved separation of soybean leghemoglobins. Biochemistry. 1975 Oct 7;14(20):4444–4450. doi: 10.1021/bi00691a016. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans I. M., Fawcett T., Boulter D., Fordham-Skelton A. P. A homologue of the 65 kDa regulatory subunit of protein phosphatase 2A in early pea (Pisum sativum L.) embryos. Plant Mol Biol. 1994 Feb;24(4):689–695. doi: 10.1007/BF00023566. [DOI] [PubMed] [Google Scholar]
  7. Foyer C. H. Stromal protein phosphorylation in spinach (Spinacia oleracea) chloroplasts. Biochem J. 1985 Oct 1;231(1):97–103. doi: 10.1042/bj2310097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giembycz M. A., Diamond J. Evaluation of kemptide, a synthetic serine-containing heptapeptide, as a phosphate acceptor for the estimation of cyclic AMP-dependent protein kinase activity in respiratory tissues. Biochem Pharmacol. 1990 Jan 15;39(2):271–283. doi: 10.1016/0006-2952(90)90026-h. [DOI] [PubMed] [Google Scholar]
  9. Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):4888–4894. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. MacKintosh C., Coggins J., Cohen P. Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase. Biochem J. 1991 Feb 1;273(Pt 3):733–738. doi: 10.1042/bj2730733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Markwell J. P., Baker N. R., Bradbury M., Thornber J. P. Use of zinc ions to study thylakoid protein phosphorylation and the state 1-state 2 transition in vitro. Plant Physiol. 1984 Feb;74(2):348–354. doi: 10.1104/pp.74.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nelissen B., Van de Peer Y., Wilmotte A., De Wachter R. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol. 1995 Nov;12(6):1166–1173. doi: 10.1093/oxfordjournals.molbev.a040289. [DOI] [PubMed] [Google Scholar]
  14. Pato M., Adelstein R. S. Purification of smooth muscle phosphatases. Methods Enzymol. 1982;85(Pt B):308–315. doi: 10.1016/0076-6879(82)85030-1. [DOI] [PubMed] [Google Scholar]
  15. Pay A., Pirck M., Bögre L., Hirt H., Heberle-Bors E. Isolation and characterization of phosphoprotein phosphatase 1 from alfalfa. Mol Gen Genet. 1994 Jul 25;244(2):176–182. doi: 10.1007/BF00283520. [DOI] [PubMed] [Google Scholar]
  16. Rundle S. J., Nasrallah J. B. Molecular characterization of type 1 serine/threonine phosphatases from Brassica oleracea. Plant Mol Biol. 1992 Nov;20(3):367–375. doi: 10.1007/BF00040596. [DOI] [PubMed] [Google Scholar]
  17. Salvucci M. E., Drake R. R., Broadbent K. P., Haley B. E., Hanson K. R., McHale N. A. Identification of the 64 kilodalton chloroplast stromal phosphoprotein as phosphoglucomutase. Plant Physiol. 1990 May;93(1):105–109. doi: 10.1104/pp.93.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shacter E. Organic extraction of Pi with isobutanol/toluene. Anal Biochem. 1984 May 1;138(2):416–420. doi: 10.1016/0003-2697(84)90831-5. [DOI] [PubMed] [Google Scholar]
  19. Silverstein T., Cheng L., Allen J. F. Chloroplast thylakoid protein phosphatase reactions are redox-independent and kinetically heterogeneous. FEBS Lett. 1993 Nov 8;334(1):101–105. doi: 10.1016/0014-5793(93)81690-2. [DOI] [PubMed] [Google Scholar]
  20. Sun G., Sarath G., Markwell J. Phosphopeptides as substrates for thylakoid protein phosphatase activity. Arch Biochem Biophys. 1993 Aug 1;304(2):490–495. doi: 10.1006/abbi.1993.1380. [DOI] [PubMed] [Google Scholar]
  21. Wera S., Hemmings B. A. Serine/threonine protein phosphatases. Biochem J. 1995 Oct 1;311(Pt 1):17–29. doi: 10.1042/bj3110017. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES