Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jan;113(1):281–291. doi: 10.1104/pp.113.1.281

Plant 21D7 protein, a nuclear antigen associated with cell division, is a component of the 26S proteasome.

M W Smith 1, M Ito 1, M Miyawaki 1, S Sato 1, Y Yoshikawa 1, S Wada 1, H Maki 1, H Nakagawa 1, A Komamine 1
PMCID: PMC158140  PMID: 9008397

Abstract

Previously, we cloned a carrot (Daucus carota L.) cDNA encoding a 45-kD protein, 21D7, located in the nuclei of proliferating cells. The 21D7 protein is similar to the partial sequence of a regulatory subunit of the bovine 26S proteasome, p58 (G. DeMartino, C.R. Moomaw, O.P. Zagnitko, R.J. Proske, M. Chu-Ping, S.J. Afendis, J.C. Swaffield, C.A. Slaughter [1994] J Biol Chem 269: 20878-20884) and to the deduced sequence encoded by the Saccharomyces cerevisiae gene SUN2 (M. Kawamura, K. Kominami, J. Takeuchi, A. Toh-e [1996] Mol Gen Genet 251: [146-152]). In our work, the expression of plant 21D7 cDNA rescued the yeast sun2 mutant. Fractionation of carrot and spinach (Spinacia oleracea L.) crude extracts showed that the 21D7 protein sedimented with the active 26S proteasomes. The cessation of cell proliferation in carrot suspensions at the stationary phase caused 26S proteasome dissociation and, correspondingly, the 21D7 protein sedimented together with the free regulatory complexes of the 26s proteasomes. Large-scale purification of carrot 26s proteasomes resulted in co-isolation of the 21D7 protein. Polyacrylamide gel electrophoresis under nondenaturing conditions showed that the 21D7 protein had the same mobility as the 26S proteasome and that proteasome dissociation changed the mobility of the 21D7 protein accordingly. We conclude that the 21D7 protein is a subunit of the plant 26S proteasome and that it probably belongs to the proteasome regulatory complex.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Ciechanover A., DiGiuseppe J. A., Bercovich B., Orian A., Richter J. D., Schwartz A. L., Brodeur G. M. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):139–143. doi: 10.1073/pnas.88.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994 Oct 7;79(1):13–21. doi: 10.1016/0092-8674(94)90396-4. [DOI] [PubMed] [Google Scholar]
  4. DeMartino G. N., Moomaw C. R., Zagnitko O. P., Proske R. J., Chu-Ping M., Afendis S. J., Swaffield J. C., Slaughter C. A. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J Biol Chem. 1994 Aug 19;269(33):20878–20884. [PubMed] [Google Scholar]
  5. DeMartino G. N., Proske R. J., Moomaw C. R., Strong A. A., Song X., Hisamatsu H., Tanaka K., Slaughter C. A. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem. 1996 Feb 9;271(6):3112–3118. doi: 10.1074/jbc.271.6.3112. [DOI] [PubMed] [Google Scholar]
  6. Dubiel W., Ferrell K., Pratt G., Rechsteiner M. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J Biol Chem. 1992 Nov 15;267(32):22699–22702. [PubMed] [Google Scholar]
  7. Emori Y., Tsukahara T., Kawasaki H., Ishiura S., Sugita H., Suzuki K. Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol Cell Biol. 1991 Jan;11(1):344–353. doi: 10.1128/mcb.11.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedman H., Snyder M. Mutations in PRG1, a yeast proteasome-related gene, cause defects in nuclear division and are suppressed by deletion of a mitotic cyclin gene. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2031–2035. doi: 10.1073/pnas.91.6.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujimura T., Komamine A. Synchronization of somatic embryogenesis in a carrot cell suspension culture. Plant Physiol. 1979 Jul;64(1):162–164. doi: 10.1104/pp.64.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujinami K., Tanahashi N., Tanaka K., Ichihara A., Cejka Z., Baumeister W., Miyawaki M., Sato T., Nakagawa H. Purification and characterization of the 26 S proteasome from spinach leaves. J Biol Chem. 1994 Oct 14;269(41):25905–25910. [PubMed] [Google Scholar]
  11. Genschik P., Philipps G., Gigot C., Fleck J. Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome alpha subunit from Drosophila. FEBS Lett. 1992 Sep 14;309(3):311–315. doi: 10.1016/0014-5793(92)80796-j. [DOI] [PubMed] [Google Scholar]
  12. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  13. Hoffman L., Pratt G., Rechsteiner M. Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J Biol Chem. 1992 Nov 5;267(31):22362–22368. [PubMed] [Google Scholar]
  14. Hoffman L., Rechsteiner M. Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits. J Biol Chem. 1994 Jun 17;269(24):16890–16895. [PubMed] [Google Scholar]
  15. Kanayama H. O., Tamura T., Ugai S., Kagawa S., Tanahashi N., Yoshimura T., Tanaka K., Ichihara A. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms. Eur J Biochem. 1992 Jun 1;206(2):567–578. doi: 10.1111/j.1432-1033.1992.tb16961.x. [DOI] [PubMed] [Google Scholar]
  16. Kawamura M., Kominami K., Takeuchi J., Toh-e A. A multicopy suppressor of nin1-1 of the yeast Saccharomyces cerevisiae is a counterpart of the Drosophila melanogaster diphenol oxidase A2 gene, Dox-A2. Mol Gen Genet. 1996 May 23;251(2):146–152. doi: 10.1007/BF02172912. [DOI] [PubMed] [Google Scholar]
  17. Kodama H., Ito M., Hattori T., Nakamura K., Komamine A. Isolation of Genes that Are Preferentially Expressed at the G(1)/S Boundary during the Cell Cycle in Synchronized Cultures of Catharanthus roseus Cells. Plant Physiol. 1991 Feb;95(2):406–411. doi: 10.1104/pp.95.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kominami K., DeMartino G. N., Moomaw C. R., Slaughter C. A., Shimbara N., Fujimuro M., Yokosawa H., Hisamatsu H., Tanahashi N., Shimizu Y. Nin1p, a regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28p kinase of Saccharomyces cerevisiae. EMBO J. 1995 Jul 3;14(13):3105–3115. doi: 10.1002/j.1460-2075.1995.tb07313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee D. H., Tanaka K., Tamura T., Chung C. H., Ichihara A. PRS3 encoding an essential subunit of yeast proteasomes homologous to mammalian proteasome subunit C5. Biochem Biophys Res Commun. 1992 Jan 31;182(2):452–460. doi: 10.1016/0006-291x(92)91753-d. [DOI] [PubMed] [Google Scholar]
  20. Lupas A., Zwickl P., Baumeister W. Proteasome sequences in eubacteria. Trends Biochem Sci. 1994 Dec;19(12):533–534. doi: 10.1016/0968-0004(94)90054-x. [DOI] [PubMed] [Google Scholar]
  21. Ozaki M., Fujinami K., Tanaka K., Amemiya Y., Sato T., Ogura N., Nakagawa H. Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem. 1992 Oct 25;267(30):21678–21684. [PubMed] [Google Scholar]
  22. Pagano M., Tam S. W., Theodoras A. M., Beer-Romero P., Del Sal G., Chau V., Yew P. R., Draetta G. F., Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995 Aug 4;269(5224):682–685. doi: 10.1126/science.7624798. [DOI] [PubMed] [Google Scholar]
  23. Pentz E. S., Wright T. R. Drosophila melanogaster diphenol oxidase A2: gene structure and homology with the mouse mast-cell tum- transplantation antigen, P91A. Gene. 1991 Jul 22;103(2):239–242. doi: 10.1016/0378-1119(91)90279-k. [DOI] [PubMed] [Google Scholar]
  24. Peters J. M., Cejka Z., Harris J. R., Kleinschmidt J. A., Baumeister W. Structural features of the 26 S proteasome complex. J Mol Biol. 1993 Dec 20;234(4):932–937. doi: 10.1006/jmbi.1993.1646. [DOI] [PubMed] [Google Scholar]
  25. Peters J. M., Franke W. W., Kleinschmidt J. A. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994 Mar 11;269(10):7709–7718. [PubMed] [Google Scholar]
  26. Prombona A., Tabler M., Providaki M., Tsagris M. Structure and expression of LeMA-1, a tomato protein belonging to the SEC18-PAS1-CDC48-TBP-1 protein family of putative Mg(2+)-dependent ATPases. Plant Mol Biol. 1995 Mar;27(6):1109–1118. doi: 10.1007/BF00020884. [DOI] [PubMed] [Google Scholar]
  27. Rechsteiner M., Hoffman L., Dubiel W. The multicatalytic and 26 S proteases. J Biol Chem. 1993 Mar 25;268(9):6065–6068. [PubMed] [Google Scholar]
  28. Rechsteiner M. Natural substrates of the ubiquitin proteolytic pathway. Cell. 1991 Aug 23;66(4):615–618. doi: 10.1016/0092-8674(91)90104-7. [DOI] [PubMed] [Google Scholar]
  29. Rivett A. J. Proteasomes: multicatalytic proteinase complexes. Biochem J. 1993 Apr 1;291(Pt 1):1–10. doi: 10.1042/bj2910001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shimbara N., Orino E., Sone S., Ogura T., Takashina M., Shono M., Tamura T., Yasuda H., Tanaka K., Ichihara A. Regulation of gene expression of proteasomes (multi-protease complexes) during growth and differentiation of human hematopoietic cells. J Biol Chem. 1992 Sep 5;267(25):18100–18109. [PubMed] [Google Scholar]
  31. Tanaka K., Tamura T., Yoshimura T., Ichihara A. Proteasomes: protein and gene structures. New Biol. 1992 Mar;4(3):173–187. [PubMed] [Google Scholar]
  32. Tanaka K., Yoshimura T., Kumatori A., Ichihara A., Ikai A., Nishigai M., Kameyama K., Takagi T. Proteasomes (multi-protease complexes) as 20 S ring-shaped particles in a variety of eukaryotic cells. J Biol Chem. 1988 Nov 5;263(31):16209–16217. [PubMed] [Google Scholar]
  33. Wright T. R. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet. 1987;24:127–222. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES