Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Feb;113(2):367–376. doi: 10.1104/pp.113.2.367

Purification, characterization, and structural analysis of a plant low-temperature-induced protein.

J G Boothe 1, F D Sönnichsen 1, M D de Beus 1, A M Johnson-Flanagan 1
PMCID: PMC158150  PMID: 9046590

Abstract

We have purified to near homogeneity a recombinant form of the protein BN28 (rBN28), expressed in response to low temperature in Brassica napus plants, and we have determined its solution structure. Antibodies raised against rBN28 were used to characterize the recombinant and native proteins. Similar to many other low-temperature-induced proteins, BN28 is extremely hydrophilic, such that it remains soluble following boiling. Immunoblot analysis of subcellular fractions indicated that BN28 was not strongly associated with cellular membranes and was localized exclusively within the soluble fraction of the cell. Contrary to predicted secondary structure that suggested significant helical content, circular dichroism analysis revealed that rBN28 existed in aqueous solution largely as a random coil. However, the helical propensity of the protein could be demonstrated in the presence of trifluoroethanol. Nuclear magnetic resonance analysis further showed that rBN28 was in fact completely unstructured (100% coil) in aqueous solution. Although it had earlier been speculated that BN28-like proteins from Arabidopsis thaliana might possess antifreeze protein activity (S. Kurkela and M. Franck [1990] Plant Mol Biol 15: 137-144), no such activity could be detected in ice recrystallization assays with rBN28.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. S., Wilhelm K. S., Thomashow M. F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 1994 Mar;24(5):701–713. doi: 10.1007/BF00029852. [DOI] [PubMed] [Google Scholar]
  2. Boothe J. G., De Beus M. D., Johnson-Flanagan A. M. Expression of a Low-Temperature-Induced Protein in Brassica napus. Plant Physiol. 1995 Jun;108(2):795–803. doi: 10.1104/pp.108.2.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cattivelli L., Bartels D. Molecular cloning and characterization of cold-regulated genes in barley. Plant Physiol. 1990 Aug;93(4):1504–1510. doi: 10.1104/pp.93.4.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  5. Dunn M. A., Goddard N. J., Zhang L., Pearce R. S., Hughes M. A. Low-temperature-responsive barley genes have different control mechanisms. Plant Mol Biol. 1994 Mar;24(6):879–888. doi: 10.1007/BF00014442. [DOI] [PubMed] [Google Scholar]
  6. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  7. Gilmour S. J., Artus N. N., Thomashow M. F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jan;18(1):13–21. doi: 10.1007/BF00018452. [DOI] [PubMed] [Google Scholar]
  8. Gilmour S. J., Hajela R. K., Thomashow M. F. Cold Acclimation in Arabidopsis thaliana. Plant Physiol. 1988 Jul;87(3):745–750. doi: 10.1104/pp.87.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilmour S. J., Lin C., Thomashow M. F. Purification and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol. 1996 May;111(1):293–299. doi: 10.1104/pp.111.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guy C. L., Haskell D. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol. 1987 Jul;84(3):872–878. doi: 10.1104/pp.84.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hajela R. K., Horvath D. P., Gilmour S. J., Thomashow M. F. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):1246–1252. doi: 10.1104/pp.93.3.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hon W. C., Griffith M., Chong P., Yang DSC. Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves. Plant Physiol. 1994 Mar;104(3):971–980. doi: 10.1104/pp.104.3.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hon W. C., Griffith M., Mlynarz A., Kwok Y. C., Yang D. S. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 1995 Nov;109(3):879–889. doi: 10.1104/pp.109.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houde M., Daniel C., Lachapelle M., Allard F., Laliberté S., Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 1995 Oct;8(4):583–593. doi: 10.1046/j.1365-313x.1995.8040583.x. [DOI] [PubMed] [Google Scholar]
  15. Kurkela S., Borg-Franck M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jul;19(4):689–692. doi: 10.1007/BF00026794. [DOI] [PubMed] [Google Scholar]
  16. Lin C., Guo W. W., Everson E., Thomashow M. F. Cold acclimation in Arabidopsis and wheat : a response associated with expression of related genes encoding ;boiling-stable' polypeptides. Plant Physiol. 1990 Nov;94(3):1078–1083. doi: 10.1104/pp.94.3.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lin C., Thomashow M. F. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1103–1108. doi: 10.1016/s0006-291x(05)80304-3. [DOI] [PubMed] [Google Scholar]
  18. Lin C., Thomashow M. F. DNA Sequence Analysis of a Complementary DNA for Cold-Regulated Arabidopsis Gene cor15 and Characterization of the COR 15 Polypeptide. Plant Physiol. 1992 Jun;99(2):519–525. doi: 10.1104/pp.99.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meza-Basso L., Alberdi M., Raynal M., Ferrero-Cadinanos M. L., Delseny M. Changes in Protein Synthesis in Rapeseed (Brassica napus) Seedlings during a Low Temperature Treatment. Plant Physiol. 1986 Nov;82(3):733–738. doi: 10.1104/pp.82.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mohapatra S. S., Poole R. J., Dhindsa R. S. Alterations in Membrane Protein-Profile during Cold Treatment of Alfalfa. Plant Physiol. 1988 Apr;86(4):1005–1007. doi: 10.1104/pp.86.4.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Monroy A. F., Castonguay Y., Laberge S., Sarhan F., Vezina L. P., Dhindsa R. S. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol. 1993 Jul;102(3):873–879. doi: 10.1104/pp.102.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Monroy A. F., Dhindsa R. S. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell. 1995 Mar;7(3):321–331. doi: 10.1105/tpc.7.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mueller G. M., McKown R. L., Corotto L. V., Hague C., Warren G. J. Inhibition of recrystallization in ice by chimeric proteins containing antifreeze domains. J Biol Chem. 1991 Apr 25;266(12):7339–7344. [PubMed] [Google Scholar]
  24. Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
  25. Neven L. G., Haskell D. W., Hofig A., Li Q. B., Guy C. L. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993 Jan;21(2):291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
  26. Orr W., Iu B., White T. C., Robert L. S., Singh J. Complementary DNA Sequence of a Low Temperature-Induced Brassica napus Gene with Homology to the Arabidopsis thaliana kin1 Gene. Plant Physiol. 1992 Apr;98(4):1532–1534. doi: 10.1104/pp.98.4.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ramalingam K., Aimoto S., Bello J. Conformational studies of anionic melittin analogues: effect of peptide concentration, pH, ionic strength, and temperature--models for protein folding and halophilic proteins. Biopolymers. 1992 Aug;32(8):981–992. doi: 10.1002/bip.360320809. [DOI] [PubMed] [Google Scholar]
  28. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  29. Roberts J. K., DeSimone N. A., Lingle W. L., Dure L., 3rd Cellular Concentrations and Uniformity of Cell-Type Accumulation of Two Lea Proteins in Cotton Embryos. Plant Cell. 1993 Jul;5(7):769–780. doi: 10.1105/tpc.5.7.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  31. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  32. Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
  33. Wang H., Datla R., Georges F., Loewen M., Cutler A. J. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol. 1995 Jul;28(4):605–617. doi: 10.1007/BF00021187. [DOI] [PubMed] [Google Scholar]
  34. Webb M. S., Gilmour S. J., Thomashow M. F., Steponkus P. L. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol. 1996 May;111(1):301–312. doi: 10.1104/pp.111.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wen D., Laursen R. A. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. J Biol Chem. 1992 Jul 15;267(20):14102–14108. [PubMed] [Google Scholar]
  36. Weretilnyk E., Orr W., White T. C., Iu B., Singh J. Characterization of three related low-temperature-regulated cDNAs from winter Brassica napus. Plant Physiol. 1993 Jan;101(1):171–177. doi: 10.1104/pp.101.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wishart D. S., Sykes B. D., Richards F. M. Simple techniques for the quantification of protein secondary structure by 1H NMR spectroscopy. FEBS Lett. 1991 Nov 18;293(1-2):72–80. doi: 10.1016/0014-5793(91)81155-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES