Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Feb;113(2):403–409. doi: 10.1104/pp.113.2.403

Characterization of a maize beta-amylase cDNA clone and its expression during seed germination.

S M Wang 1, W L Lue 1, S Y Wu 1, H W Huang 1, J Chen 1
PMCID: PMC158154  PMID: 9046591

Abstract

A maize (Zea mays L.) cDNA clone (pZMB2) encoding beta-amylase was isolated from a cDNA library prepared from the aleurone RNA of germinating kernels. The cDNA encodes a predicted product of 488 amino acids with significant similarity to known beta-amylases from barley (Hordeum vulgare), rye (Secale cereale), and rice (Oryza sativa). Glycine-rich repeats found in the carboxyl terminus of the endosperm-specific beta-amylase of barley and rye are absent from the maize gene product. The N-terminal sequence of the first 20 amino acids of a beta-amylase peptide derived from purified protein is identical to the 5th through 24th amino acids of the predicted cDNA product, indicating the absence of a conventional signal peptide in the maize protein. Recombinant inbred mapping data indicate that the cDNA clone is single-copy gene that maps to chromosome 7L at position 83 centimorgans. Northern blot analysis and in vitro translation-immunoprecipitation data indicate that the maize beta-amylase is synthesized de novo in the aleurone cells but not in the scutellum during seed germination.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chao S. E., Scandalios J. G. Identification and genetic control of starch-degrading enzymes in maize endosperm. Biochem Genet. 1969 Dec;3(6):537–547. doi: 10.1007/BF00485475. [DOI] [PubMed] [Google Scholar]
  3. Daussant J., Sadowski J., Rorat T., Mayer C., Laurière C. Independent Regulatory Aspects and Posttranslational Modifications of Two beta-Amylases of Rye : Use of a Mutant Inbred Line. Plant Physiol. 1991 May;96(1):84–90. doi: 10.1104/pp.96.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eimert K., Wang S. M., Lue W. I., Chen J. Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis. Plant Cell. 1995 Oct;7(10):1703–1712. doi: 10.1105/tpc.7.10.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gagnon J., Palmiter R. D., Walsh K. A. Comparison of the NH2-terminal sequence of ovalbumin as synthesized in vitro and in vivo. J Biol Chem. 1978 Oct 25;253(20):7464–7468. [PubMed] [Google Scholar]
  6. Hayes J. D., Mantle T. J. Anomalous electrophoretic behaviour of the glutathione S-transferase Ya and Yk subunits isolated from man and rodents. A potential pitfall for nomenclature. Biochem J. 1986 Aug 1;237(3):731–740. doi: 10.1042/bj2370731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kreis M., Williamson M., Buxton B., Pywell J., Hejgaard J., Svendsen I. Primary structure and differential expression of beta-amylase in normal and mutant barleys. Eur J Biochem. 1987 Dec 15;169(3):517–525. doi: 10.1111/j.1432-1033.1987.tb13640.x. [DOI] [PubMed] [Google Scholar]
  8. Mikami B., Nomura K., Morita Y. N-terminal sequence of soybean beta-amylase. J Biochem. 1986 Aug;100(2):513–516. doi: 10.1093/oxfordjournals.jbchem.a121741. [DOI] [PubMed] [Google Scholar]
  9. Okamoto K., Akazawa T. Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds: 9. DE NOVO SYNTHESIS OF beta-AMYLASE. Plant Physiol. 1980 Jan;65(1):81–84. doi: 10.1104/pp.65.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sadowski J., Rorat T., Cooke R., Delseny M. Nucleotide sequence of a cDNA clone encoding ubiquitous beta-amylase in rye (Secale cereale L.). Plant Physiol. 1993 May;102(1):315–316. doi: 10.1104/pp.102.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sopanen T., Laurière C. Release and Activity of Bound beta-Amylase in a Germinating Barley Grain. Plant Physiol. 1989 Jan;89(1):244–249. doi: 10.1104/pp.89.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wang S. M., Huang A. H. Biosynthesis of lipase in the scutellum of maize kernel. J Biol Chem. 1987 Feb 15;262(5):2270–2274. [PubMed] [Google Scholar]
  13. Ye R. D., Wun T. C., Sadler J. E. Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells. J Biol Chem. 1988 Apr 5;263(10):4869–4875. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES