Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Feb;113(2):419–424. doi: 10.1104/pp.113.2.419

Sugar-Dependent Gibberellin-Induced Chalcone Synthase Gene Expression in Petunia Corollas.

D Moalem-Beno 1, G Tamari 1, Y Leitner-Dagan 1, A Borochov 1, D Weiss 1
PMCID: PMC158156  PMID: 12223616

Abstract

The induction of anthocyanin synthesis and anthocyanin biosynthetic gene expression in detached petunia (Petunia hybrida) corollas by gibberellic acid (GA3) requires sucrose. Neither sucrose nor GA3 alone can induce these processes. We found that GA3 enhances sucrose uptake by 20 to 30%, and we tested whether this is the mechanism by which the hormone induces gene expression. Changing the intracellular level of sucrose with the inhibitors p-chloromercuribenzenesulfonic acid and vanadate did not inhibit the induction of chalcone synthase gene (chs) expression by GA3. Growing detached corollas in various sucrose concentrations did not affect the induction of the gene but did affect its level of expression and the level of anthocyanin accumulated. Only metabolic sugars promoted GA3-induced anthocyanin accumulation. Mannitol and sorbitol had no effect and 3-O-methylglucose only slightly promoted chs expression and anthocyanin accumulation. Our results do not support the suggestion that sugars act as specific signals in the activation of anthocyanin biosynthetic gene expression during petunia corolla development. We suggest that sugars are essential as general sources of carbohydrates for carbon metabolism, upon which the induction of pigmentation is dependent.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dupont F. M., Burke L. L., Spanswick R. M. Characterization of a partially purified adenosine triphosphatase from a corn root plasma membrane fraction. Plant Physiol. 1981 Jan;67(1):59–63. doi: 10.1104/pp.67.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kim S. R., Costa M. A., An G. H. Sugar response element enhances wound response of potato proteinase inhibitor II promoter in transgenic tobacco. Plant Mol Biol. 1991 Nov;17(5):973–983. doi: 10.1007/BF00037137. [DOI] [PubMed] [Google Scholar]
  3. Koes R. E., Spelt C. E., Reif H. J., van den Elzen P. J., Veltkamp E., Mol J. N. Floral tissue of Petunia hybrida (V30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Res. 1986 Jul 11;14(13):5229–5239. doi: 10.1093/nar/14.13.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Sadka A., DeWald D. B., May G. D., Park W. D., Mullet J. E. Phosphate Modulates Transcription of Soybean VspB and Other Sugar-Inducible Genes. Plant Cell. 1994 May;6(5):737–749. doi: 10.1105/tpc.6.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Tsukaya H., Ohshima T., Naito S., Chino M., Komeda Y. Sugar-Dependent Expression of the CHS-A Gene for Chalcone Synthase from Petunia in Transgenic Arabidopsis. Plant Physiol. 1991 Dec;97(4):1414–1421. doi: 10.1104/pp.97.4.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES