Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Feb;113(2):451–461. doi: 10.1104/pp.113.2.451

Differential Ammonia-Elicited Changes of Cytosolic pH in Root Hair Cells of Rice and Maize as Monitored by 2[prime],7[prime]-bis-(2-Carboxyethyl)-5 (and -6)-Carboxyfluorescein-Fluorescence Ratio.

H Kosegarten 1, F Grolig 1, J Wieneke 1, G Wilson 1, B Hoffmann 1
PMCID: PMC158160  PMID: 12223619

Abstract

Intact hair cells of young rice (Oryza sativa L.) and maize roots (Zea mays L.), grown without external nitrogen, were specifically loaded with 2[prime],7[prime]-bis-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein acetoxymethyl ester to monitor fluorescence ratio cytosolic pH changes in response to external ammonia (NH4+/NH3) application. In neutral media, cytosolic pH of root hairs was 7.15 [plus or minus] 0.13 (O. sativa) and 7.08 [plus or minus] 0.11 (Z. mays). Application of 2 mM ammonia at external pH 7.0 caused a transient cytosolic alkalization (7.5 [plus or minus] 0.15 in rice; 7.23 [plus or minus] 0.13 in maize). Alkalization increased with an increase of external pH; no pH changes occurred at external pH 5.0. The influx of 13N-labeled ammonia in both plant species did not differ between external pH 5.0 and 7.0 but increased significantly with higher pH. Pretreatment with 1 mM 1-methionine sulfoximine significantly reduced the ammonia-elicited pH increase in rice but not in maize. Application of 2 mM methylammonia only caused a cytosolic pH increase at high external pH; the increase in both species compared with the ammonia-elicited alkalization in 1-methionine sulfoximine-treated roots. The differential effects indicate that cytosolic alkalization derived from (a) NH3 protonation after passive permeation of the plasma membrane and, particularly in rice, (b) additional proton consumption via the glutamine synthetase/glutamate synthase cycle.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertl A., Felle H., Bentrup F. W. Amine Transport in Riccia fluitans: Cytoplasmic and Vacuolar pH Recorded by a pH-Sensitive Microelectrode. Plant Physiol. 1984 Sep;76(1):75–78. doi: 10.1104/pp.76.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouche-Pillon S., Fleurat-Lessard P., Fromont J. C., Serrano R., Bonnemain J. L. Immunolocalization of the Plasma Membrane H+ -ATPase in Minor Veins of Vicia faba in Relation to Phloem Loading. Plant Physiol. 1994 Jun;105(2):691–697. doi: 10.1104/pp.105.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carroll A. D., Fox G. G., Laurie S., Phillips R., Ratcliffe R. G., Stewart G. R. Ammonium Assimilation and the Role of [gamma]-Aminobutyric Acid in pH Homeostasis in Carrot Cell Suspensions. Plant Physiol. 1994 Oct;106(2):513–520. doi: 10.1104/pp.106.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Efiok B. J., Webster D. A. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla. Biochemistry. 1990 May 15;29(19):4734–4739. doi: 10.1021/bi00471a030. [DOI] [PubMed] [Google Scholar]
  5. Fentem P. A., Lea P. J., Stewart G. R. Action of Inhibitors of Ammonia Assimilation on Amino Acid Metabolism in Hordeum vulgare L. (cv Golden Promise). Plant Physiol. 1983 Mar;71(3):502–506. doi: 10.1104/pp.71.3.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horn M. A., Meadows R. P., Apostol I., Jones C. R., Gorenstein D. G., Heinstein P. F., Low P. S. Effect of Elicitation and Changes in Extracellular pH on the Cytoplasmic and Vacuolar pH of Suspension-Cultured Soybean Cells. Plant Physiol. 1992 Feb;98(2):680–686. doi: 10.1104/pp.98.2.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Irving H. R., Gehring C. A., Parish R. W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1790–1794. doi: 10.1073/pnas.89.5.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta. 1981 Nov 9;639(1):41–52. doi: 10.1016/0304-4173(81)90004-5. [DOI] [PubMed] [Google Scholar]
  9. Kosola K. R., Bloom A. J. Methylammonium as a Transport Analog for Ammonium in Tomato (Lycopersicon esculentum L.). Plant Physiol. 1994 May;105(1):435–442. doi: 10.1104/pp.105.1.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mozingo N. M., Chandler D. E. The fluorescent probe BCECF has a heterogeneous distribution in sea urchin eggs. Cell Biol Int Rep. 1990 Aug;14(8):689–699. doi: 10.1016/0309-1651(90)91188-a. [DOI] [PubMed] [Google Scholar]
  11. Musgrove E., Rugg C., Hedley D. Flow cytometric measurement of cytoplasmic pH: a critical evaluation of available fluorochromes. Cytometry. 1986 Jul;7(4):347–355. doi: 10.1002/cyto.990070409. [DOI] [PubMed] [Google Scholar]
  12. Ninnemann O., Jauniaux J. C., Frommer W. B. Identification of a high affinity NH4+ transporter from plants. EMBO J. 1994 Aug 1;13(15):3464–3471. doi: 10.1002/j.1460-2075.1994.tb06652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paradiso A. M., Tsien R. Y., Machen T. E. Digital image processing of intracellular pH in gastric oxyntic and chief cells. 1987 Jan 29-Feb 4Nature. 325(6103):447–450. doi: 10.1038/325447a0. [DOI] [PubMed] [Google Scholar]
  14. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roberts J. K., Pang M. K. Estimation of Ammonium Ion Distribution between Cytoplasm and Vacuole Using Nuclear Magnetic Resonance Spectroscopy. Plant Physiol. 1992 Nov;100(3):1571–1574. doi: 10.1104/pp.100.3.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts J. K., Wemmer D., Ray P. M., Jardetzky O. Regulation of Cytoplasmic and Vacuolar pH in Maize Root Tips under Different Experimental Conditions. Plant Physiol. 1982 Jun;69(6):1344–1347. doi: 10.1104/pp.69.6.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sasakawa H., Yamamoto Y. Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors. Plant Physiol. 1978 Oct;62(4):665–669. doi: 10.1104/pp.62.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sentenac H., Grignon C. Effect of H Excretion on the Surface pH of Corn Root Cells Evaluated by Using Weak Acid Influx as a pH Probe. Plant Physiol. 1987 Aug;84(4):1367–1372. doi: 10.1104/pp.84.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tanke H. J., van Oostveldt P., van Duijn P. A parameter for the distribution of fluorophores in cells derived from measurements of inner filter effect and reabsorption phenomenon. Cytometry. 1982 May;2(6):359–369. doi: 10.1002/cyto.990020602. [DOI] [PubMed] [Google Scholar]
  20. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  21. Wang M. Y., Siddiqi M. Y., Ruth T. J., Glass ADM. Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiol. 1993 Dec;103(4):1259–1267. doi: 10.1104/pp.103.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wedler F. C., Horn B. R. Catalytic mechanisms of glutamine synthetase enzymes. Studies with analogs of possible intermediates and transition states. J Biol Chem. 1976 Dec 10;251(23):7530–7538. [PubMed] [Google Scholar]
  23. Wolosin J. M., Alvarez L. J., Candia O. A. Cellular pH and Na+-H+ exchange activity in lens epithelium of Bufo marinus toad. Am J Physiol. 1988 Nov;255(5 Pt 1):C595–C602. doi: 10.1152/ajpcell.1988.255.5.C595. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES