Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Feb;113(2):611–619. doi: 10.1104/pp.113.2.611

The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B.

K L Childs 1, F R Miller 1, M M Cordonnier-Pratt 1, L H Pratt 1, P W Morgan 1, J E Mullet 1
PMCID: PMC158177  PMID: 9046599

Abstract

The Ma3 gene is one of six genes that regulate the photoperiodic sensitivity of flowering in sorghum (Sorghum bicolor [L.] Moench). The ma3R mutation of this gene causes a phenotype that is similar to plants that are known to lack phytochrome B, and ma3 sorghum lacks a 123-KD phytochrome that predominates in light-grown plants and that is present in non-ma3 plants. A population segregating for Ma3 and ma3 was created and used to identify two randomly amplified polymorphic DNA markers linked to Ma3. These two markers were cloned and mapped in a recombinant inbred population as restriction fragment length polymorphisms. cDNA clones of PHYA and PHYC were cloned and sequenced from a cDNA library prepared from green sorghum leaves. Using a genome-walking technique, a 7941-bp partial sequence of PHYB, was determined from genomic DNA from ma3 sorghum. PHYA, PHYB, and PHYC all mapped to the same linkage group. The Ma3-linked markers mapped with PHYB more than 121 centimorgans from PHYA and PHYC. A frameshift mutation resulting in a premature stop codon was found in the PHYB sequence from ma3 sorghum. Therefore, we conclude that the Ma3 locus in sorghum is a PHYB gene that encodes a 123-kD phytochrome.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernier G., Havelange A., Houssa C., Petitjean A., Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993 Oct;5(10):1147–1155. doi: 10.1105/tpc.5.10.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherry J. R., Hondred D., Walker J. M., Keller J. M., Hershey H. P., Vierstra R. D. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell. 1993 May;5(5):565–575. doi: 10.1105/tpc.5.5.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Childs K. L., Cordonnier-Pratt M. M., Pratt L. H., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor: VII. ma(3) Flowering Mutant Lacks a Phytochrome that Predominates in Green Tissue. Plant Physiol. 1992 Jun;99(2):765–770. doi: 10.1104/pp.99.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Childs K. L., Lu J. L., Mullet J. E., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor (X. Greatly Attenuated Photoperiod Sensitivity in a Phytochrome-Deficient Sorghum Possessing a Biological Clock but Lacking a Red Light-High Irradiance Response). Plant Physiol. 1995 May;108(1):345–351. doi: 10.1104/pp.108.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Childs K. L., Pratt L. H., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor: VI. The ma(3) Allele Results in Abnormal Phytochrome Physiology. Plant Physiol. 1991 Oct;97(2):714–719. doi: 10.1104/pp.97.2.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coupland G. Regulation of flowering time: Arabidopsis as a model system to study genes that promote or delay flowering. Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):27–34. doi: 10.1098/rstb.1995.0133. [DOI] [PubMed] [Google Scholar]
  8. Dehesh K., Tepperman J., Christensen A. H., Quail P. H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet. 1991 Feb;225(2):305–313. doi: 10.1007/BF00269863. [DOI] [PubMed] [Google Scholar]
  9. Devlin P. F., Rood S. B., Somers D. E., Quail P. H., Whitelam G. C. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide. Plant Physiol. 1992 Nov;100(3):1442–1447. doi: 10.1104/pp.100.3.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Foster K. R., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor (IX. The ma3R Allele Disrupts Diurnal Control of Gibberellin Biosynthesis). Plant Physiol. 1995 May;108(1):337–343. doi: 10.1104/pp.108.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halliday K. J., Koornneef M., Whitelam G. C. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol. 1994 Apr;104(4):1311–1315. doi: 10.1104/pp.104.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holton T. A., Graham M. W. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 1991 Mar 11;19(5):1156–1156. doi: 10.1093/nar/19.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson E., Bradley M., Harberd N. P., Whitelam G. C. Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol. 1994 May;105(1):141–149. doi: 10.1104/pp.105.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  16. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  17. Lin Y. R., Schertz K. F., Paterson A. H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics. 1995 Sep;141(1):391–411. doi: 10.1093/genetics/141.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mocikat R., Kardinal C., Klobeck H. G. Differential interactions between the immunoglobulin heavy chain mu intron and 3' enhancer. Eur J Immunol. 1995 Nov;25(11):3195–3198. doi: 10.1002/eji.1830251132. [DOI] [PubMed] [Google Scholar]
  19. Morgan P. W., Quinby J. R. Genetic Regulation of Development in Sorghum bicolor: IV. GA(3) Hastens Floral Differentiation but Not Floral Development under Nonfavorable Photoperiods. Plant Physiol. 1987 Nov;85(3):615–620. doi: 10.1104/pp.85.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ogden R. C., Adams D. A. Electrophoresis in agarose and acrylamide gels. Methods Enzymol. 1987;152:61–87. doi: 10.1016/0076-6879(87)52011-0. [DOI] [PubMed] [Google Scholar]
  21. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R., Liu S. C., Stansel J. W., Irvine J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. doi: 10.1126/science.269.5231.1714. [DOI] [PubMed] [Google Scholar]
  22. Pratt L. H., Cordonnier-Pratt M. M., Hauser B., Caboche M. Tomato contains two differentially expressed genes encoding B-type phytochromes, neither of which can be considered an ortholog of Arabidopsis phytochrome B. Planta. 1995;197(1):203–206. doi: 10.1007/BF00239958. [DOI] [PubMed] [Google Scholar]
  23. Reed J. W., Foster K. R., Morgan P. W., Chory J. Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol. 1996 Sep;112(1):337–342. doi: 10.1104/pp.112.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siebert P. D., Chenchik A., Kellogg D. E., Lukyanov K. A., Lukyanov S. A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995 Mar 25;23(6):1087–1088. doi: 10.1093/nar/23.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Tuinen A., Kerckhoffs LHJ., Nagatani A., Kendrick R. E., Koornneef M. A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome. Plant Physiol. 1995 Jul;108(3):939–947. doi: 10.1104/pp.108.3.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Veit B., Schmidt R. J., Hake S., Yanofsky M. F. Maize Floral Development: New Genes and Old Mutants. Plant Cell. 1993 Oct;5(10):1205–1215. doi: 10.1105/tpc.5.10.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wagner D., Quail P. H. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8596–8600. doi: 10.1073/pnas.92.19.8596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES