Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):667–676. doi: 10.1104/pp.113.3.667

Molecular Genetics of Crassulacean Acid Metabolism.

J C Cushman 1, H J Bohnert 1
PMCID: PMC158184  PMID: 12223634

Abstract

Most higher plants assimilate atmospheric CO2 through the C3 pathway of photosynthesis using ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, when CO2 availability is reduced by environmental stress conditions, the incomplete discrimination of CO2 over O2 by Rubisco leads to increased photorespiration, a process that reduces the efficiency of C3 photosynthesis. To overcome the wasteful process of photorespiration, approximately 10% of higher plant species have evolved two alternate strategies for photosynthetic CO2 assimilation, C4 photosynthesis and Crassulacean acid metabolism. Both of these biochemical pathways employ a "CO2 pump" to elevate intracellular CO2 concentrations in the vicinity of Rubisco, suppressing photorespiration and therefore improving the competitiveness of these plants under conditions of high light intensity, high temperature, or low water availability. This CO2 pump consists of a primary carboxylating enzyme, phosphoenolpyruvate carboxylase. In C4 plants, this CO2-concentrating mechanism is achieved by the coordination of two carboxylating reactions that are spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7: 797-807;M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol 111: 949-957). In contrast, Crassulacean acid metabolism plants perform both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell-specific changes in the expression of many genes that are not present in C3 plants.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., Li D., Prakash N., Stevens F. J. Identification of potential redox-sensitive cysteines in cytosolic forms of fructosebisphosphatase and glyceraldehyde-3-phosphate dehydrogenase. Planta. 1995;196(1):118–124. doi: 10.1007/BF00193225. [DOI] [PubMed] [Google Scholar]
  2. Barkla B. J., Zingarelli L., Blumwald E., Smith JAC. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L. Plant Physiol. 1995 Oct;109(2):549–556. doi: 10.1104/pp.109.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bastide B., Sipes D., Hann J., Ting I. P. Effect of Severe Water Stress on Aspects of Crassulacean Acid Metabolism in Xerosicyos. Plant Physiol. 1993 Dec;103(4):1089–1096. doi: 10.1104/pp.103.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baur B., Fischer K., Winter K., Dietz K. J. cDNA sequence of a protein kinase from the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum L., encoding a SNF-1 homolog. Plant Physiol. 1994 Nov;106(3):1225–1226. doi: 10.1104/pp.106.3.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chollet Raymond, Vidal Jean, O'Leary Marion H. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):273–298. doi: 10.1146/annurev.arplant.47.1.273. [DOI] [PubMed] [Google Scholar]
  6. Chu C., Dai Z., Ku M. S., Edwards G. E. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid. Plant Physiol. 1990 Jul;93(3):1253–1260. doi: 10.1104/pp.93.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cushman J. C., Meyer G., Michalowski C. B., Schmitt J. M., Bohnert H. J. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell. 1989 Jul;1(7):715–725. doi: 10.1105/tpc.1.7.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cushman J. C., Michalowski C. B., Bohnert H. J. Developmental control of crassulacean Acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol. 1990 Nov;94(3):1137–1142. doi: 10.1104/pp.94.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dietz K. J., Arbinger B. cDNA sequence and expression of subunit E of the vacuolar H(+)-ATPase in the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum. Biochim Biophys Acta. 1996 Jun 11;1281(2):134–138. doi: 10.1016/0005-2736(96)00044-2. [DOI] [PubMed] [Google Scholar]
  10. Fisslthaler B., Meyer G., Bohnert H. J., Schmitt J. M. Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L. Planta. 1995;196(3):492–500. doi: 10.1007/BF00203649. [DOI] [PubMed] [Google Scholar]
  11. Forsthoefel N. R., Cushman M. A., Cushman J. C. Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum Crystallinum L. Plant Physiol. 1995 Jul;108(3):1185–1195. doi: 10.1104/pp.108.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Furbank R. T., Taylor W. C. Regulation of Photosynthesis in C3 and C4 Plants: A Molecular Approach. Plant Cell. 1995 Jul;7(7):797–807. doi: 10.1105/tpc.7.7.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kloeckener-Gruissem B., Freeling M. Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1836–1840. doi: 10.1073/pnas.92.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ku M. S., Kano-Murakami Y., Matsuoka M. Evolution and expression of C4 photosynthesis genes. Plant Physiol. 1996 Aug;111(4):949–957. doi: 10.1104/pp.111.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li B., Chollet R. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Biochem Biophys. 1994 Oct;314(1):247–254. doi: 10.1006/abbi.1994.1437. [DOI] [PubMed] [Google Scholar]
  16. Ostrem J. A., Vernon D. M., Bohnert H. J. Increased expression of a gene coding for NAD:glyceraldehyde-3-phosphate dehydrogenase during the transition from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum. J Biol Chem. 1990 Feb 25;265(6):3497–3502. [PubMed] [Google Scholar]
  17. Schaeffer H. J., Forstheoefel N. R., Cushman J. C. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol. 1995 May;28(2):205–218. doi: 10.1007/BF00020241. [DOI] [PubMed] [Google Scholar]
  18. Thomas J. C., McElwain E. F., Bohnert H. J. Convergent Induction of Osmotic Stress-Responses : Abscisic Acid, Cytokinin, and the Effects of NaCl. Plant Physiol. 1992 Sep;100(1):416–423. doi: 10.1104/pp.100.1.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Winter K., Gademann R. Daily Changes in CO(2) and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity. Plant Physiol. 1991 Mar;95(3):768–776. doi: 10.1104/pp.95.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES