Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):685–693. doi: 10.1104/pp.113.3.685

Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana.

D M Porterfield 1, S W Matthews 1, C J Daugherty 1, M E Musgrave 1
PMCID: PMC158186  PMID: 9085569

Abstract

Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunel D. An alternative, rapid method of plant DNA extraction for PCR analyses. Nucleic Acids Res. 1992 Sep 11;20(17):4676–4676. doi: 10.1093/nar/20.17.4676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chang C., Meyerowitz E. M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408–1412. doi: 10.1073/pnas.83.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Childs K. L., Cordonnier-Pratt M. M., Pratt L. H., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor: VII. ma(3) Flowering Mutant Lacks a Phytochrome that Predominates in Green Tissue. Plant Physiol. 1992 Jun;99(2):765–770. doi: 10.1104/pp.99.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darbelley N., Driss-Ecole D., Perbal G. Differenciation et proliferation cellulaires dans des racines de mais cultive en microgravite (Biocosmos 1985). Adv Space Res. 1986;6(12):157–160. doi: 10.1016/0273-1177(86)90080-3. [DOI] [PubMed] [Google Scholar]
  5. Dolferus R., Jacobs M., Peacock W. J., Dennis E. S. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 1994 Aug;105(4):1075–1087. doi: 10.1104/pp.105.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guglielminetti L., Yamaguchi J., Perata P., Alpi A. Amylolytic Activities in Cereal Seeds under Aerobic and Anaerobic Conditions. Plant Physiol. 1995 Nov;109(3):1069–1076. doi: 10.1104/pp.109.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Halstead T. W., Dutcher F. R. Plants in space. Annu Rev Plant Physiol. 1987;38:317–345. doi: 10.1146/annurev.pp.38.060187.001533. [DOI] [PubMed] [Google Scholar]
  8. Hanson A. D., Jacobsen J. V. Control of lactate dehydrogenase, lactate glycolysis, and alpha-amylase by o(2) deficit in barley aleurone layers. Plant Physiol. 1984 Jul;75(3):566–572. doi: 10.1104/pp.75.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jarillo J. A., Leyva A., Salinas J., Martinez-Zapater J. M. Low Temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidopsis thaliana, a Chilling-Tolerant Plant. Plant Physiol. 1993 Mar;101(3):833–837. doi: 10.1104/pp.101.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koch C. J., Painter R. B. The effect of extreme hypoxia on the repair of DNA single-strand breaks in mammalian cells. Radiat Res. 1975 Nov;64(2):256–269. [PubMed] [Google Scholar]
  11. Kordyum E. L. Effects of altered gravity on plant cell processes: results of recent space and clinostatic experiments. Adv Space Res. 1994;14(8):77–85. doi: 10.1016/0273-1177(94)90388-3. [DOI] [PubMed] [Google Scholar]
  12. Krikorian A. D., O'Connor S. A. Karyological observations. Ann Bot. 1984 Nov;54(Suppl 3):49–63. doi: 10.1093/oxfordjournals.aob.a086866. [DOI] [PubMed] [Google Scholar]
  13. Kuang A., Musgrave M. E., Matthews S. W., Cummins D. B., Tucker S. C. Pollen and ovule development in Arabidopsis thaliana under spaceflight conditions. Am J Bot. 1995 May;82(5):585–595. [PubMed] [Google Scholar]
  14. Kuang A., Xiao Y., Musgrave M. E. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions. Ann Bot. 1996;78:343–351. doi: 10.1006/anbo.1996.0129. [DOI] [PubMed] [Google Scholar]
  15. Laurinavicius R., Kenstaviciene P., Rupainiene O., Necitailo G. In vitro plant cell growth in microgravity and on clinostat. Adv Space Res. 1994;14(8):87–96. doi: 10.1016/0273-1177(94)90389-1. [DOI] [PubMed] [Google Scholar]
  16. Levine H. G., Krikorian A. D. Shoot growth in aseptically cultivated daylily and haplopappus plantlets after a 5-day spaceflight. Physiol Plant. 1992;86(3):349–359. [PubMed] [Google Scholar]
  17. Mahlstedt P. P. The psychological component of infertility. Fertil Steril. 1985 Mar;43(3):335–346. doi: 10.1016/s0015-0282(16)48428-1. [DOI] [PubMed] [Google Scholar]
  18. Moore R. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells. Ann Bot. 1990;66:541–549. doi: 10.1093/oxfordjournals.aob.a088063. [DOI] [PubMed] [Google Scholar]
  19. Musgrave M. E., Gerth W. A., Scheld H. W., Strain B. R. Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb.) germinated at low pressure. Plant Physiol. 1988;86:19–22. doi: 10.1104/pp.86.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Papazian H. A., Mason L. W. Osmosis and microgravity. Biochem Biophys Res Commun. 1989 Oct 16;164(1):351–354. doi: 10.1016/0006-291x(89)91725-7. [DOI] [PubMed] [Google Scholar]
  21. Podlutsky A. G. Ultrastructural analysis of organization of roots obtained from cell cultures at clinostating and under microgravity. Adv Space Res. 1992;12(1):93–98. doi: 10.1016/0273-1177(92)90268-3. [DOI] [PubMed] [Google Scholar]
  22. Rasmussen O., Klimchuk D. A., Kordyum E. L., Danevich L. A., Tarnavskaya E. B., Lozovaya V. V., Tairbekov M. G., Baggerud C., Iversen T. H. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9. Physiol Plant. 1992 Jan;84(1):162–170. [PubMed] [Google Scholar]
  23. Russell D. A., Sachs M. M. Protein Synthesis in Maize during Anaerobic and Heat Stress. Plant Physiol. 1992 Jun;99(2):615–620. doi: 10.1104/pp.99.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schenborn E. T., Mierendorf R. C., Jr A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 1985 Sep 11;13(17):6223–6236. doi: 10.1093/nar/13.17.6223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Slocum R. D., Gaynor J. J., Galston A. W. Cytological and ultrastructural studies on root tissues. Ann Bot. 1984 Nov;54(Suppl 3):65–76. doi: 10.1093/oxfordjournals.aob.a086867. [DOI] [PubMed] [Google Scholar]
  26. Sytnik K. M., Kordyum E. L., Belyavskaya N. A., Nedukha E. M., Tarasenko V. A. Biological effects of weightlessness and clinostatic conditions registered in cells of root meristem and cap of higher plants. Adv Space Res. 1983;3(9):251–255. doi: 10.1016/0273-1177(83)90065-0. [DOI] [PubMed] [Google Scholar]
  27. Todd P. Gravity-dependent phenomena at the scale of the single cell. ASGSB Bull. 1989 Aug;2:95–113. [PubMed] [Google Scholar]
  28. Volkmann D., Behrens H. M., Sievers A. Development and gravity sensing of cress roots under microgravity. Naturwissenschaften. 1986;73:438–441. doi: 10.1007/BF00367291. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES