Abstract
Phenolic compounds extracted from cucumber (Cucumis sativus L.) leaves were separated and analyzed for their differential presence and fungitoxicity in relation to a prophylactic treatment with Milsana (Compo, Munster, Germany) against powdery mildew (Sphaerotheca fuliginea). Based on our extraction and purification procedures, at least eight separate phenolic compounds with antifungal activity were identified as intrinsic components of cucumber plants. Of these compounds, six displayed a significant increase in concentration as a result of elicitation with Milsana, this being particularly evident when the plant was stressed by the pathogen. The combined amounts of these antifungal compounds in treated plants was nearly five times the level found in control plants. One week after Milsana application, some of the antifungal compounds obtained through hydrolysis of their glycosidic links were also detected in their free form, indicating that they are likely liberated from conjugated phenolics by enzymatic hydrolysis in planta. To our knowledge, these results provide the first direct evidence that cucumber plants produce elevated levels of phytoalexins in response to an eliciting treatment after infection.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farmer E. E., Ryan C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713–7716. doi: 10.1073/pnas.87.19.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham M. Y., Graham T. L. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan. Plant Physiol. 1991 Dec;97(4):1445–1455. doi: 10.1104/pp.97.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klessig D. F., Malamy J. The salicylic acid signal in plants. Plant Mol Biol. 1994 Dec;26(5):1439–1458. doi: 10.1007/BF00016484. [DOI] [PubMed] [Google Scholar]
- Lamb C. J. Plant disease resistance genes in signal perception and transduction. Cell. 1994 Feb 11;76(3):419–422. doi: 10.1016/0092-8674(94)90106-6. [DOI] [PubMed] [Google Scholar]