Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):747–754. doi: 10.1104/pp.113.3.747

Distribution and Activity of the Plasma Membrane H+-ATPase in Mimosa pudica L. in Relation to Ionic Fluxes and Leaf Movements.

P Fleurat-Lessard 1, S Bouche-Pillon 1, C Leloup 1, J L Bonnemain 1
PMCID: PMC158192  PMID: 12223640

Abstract

Plasma membrane H+-ATPase was immunolocalized in several cell types of the sensitive plant Mimosa pudica L., and transmembrane potentials were measured on cortical cells. In comparison with the nonspecialized cortical cells of the petiole or stem, the proton pump was highly expressed in motor cells. These immunological data are in close agreement with electrophysiological data, because the active component of the transmembrane potential was low in the nonspecialized cortical cells and high in motor cells. Therefore, motor cells contain the plasma membrane H+-ATPase required to mediate the ionic fluxes that are involved in circadian leaf movements and that are necessary to recover the turgor potential that is considerably affected by the large K+ and Cl- efflux associated with seismonastic movement. With the exception of sieve tubes, the phloem also had a high density of H+-ATPase. This suggests that the recovery of the transmembrane ionic gradients (K+ and Cl-), which is affected by various stimuli, is more energized by the companion and parenchyma cells than by the sieve elements. In addition, at the phloem/cortex interface collocytes displayed the required properties for lateral transduction of the action potential toward the pulvinal motor cells.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouche-Pillon S., Fleurat-Lessard P., Fromont J. C., Serrano R., Bonnemain J. L. Immunolocalization of the Plasma Membrane H+ -ATPase in Minor Veins of Vicia faba in Relation to Phloem Loading. Plant Physiol. 1994 Jun;105(2):691–697. doi: 10.1104/pp.105.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell N. A., Stika K. M., Morrison G. H. Calcium and potassium in the motor organ of the sensitive plant: localization by ion microscopy. Science. 1979 Apr 13;204(4389):185–187. doi: 10.1126/science.204.4389.185. [DOI] [PubMed] [Google Scholar]
  3. DeWitt N. D., Sussman M. R. Immunocytological localization of an epitope-tagged plasma membrane proton pump (H(+)-ATPase) in phloem companion cells. Plant Cell. 1995 Dec;7(12):2053–2067. doi: 10.1105/tpc.7.12.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fromard L., Babin V., Fleurat-Lessard P., Fromont J. C., Serrano R., Bonnemain J. L. Control of Vascular Sap pH by the Vessel-Associated Cells in Woody Species (Physiological and Immunological Studies). Plant Physiol. 1995 Jul;108(3):913–918. doi: 10.1104/pp.108.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallet O., Lemoine R., Gaillard C., Larsson C., Delrot S. Selective Inhibition of Active Uptake of Sucrose into Plasma Membrane Vesicles by Polyclonal Sera Directed against a 42 Kilodalton Plasma Membrane Polypeptide. Plant Physiol. 1992 Jan;98(1):17–23. doi: 10.1104/pp.98.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gautier H., Vavasseur A., Lascève G., Boudet A. M. Redox Processes in the Blue Light Response of Guard Cell Protoplasts of Commelina communis L. Plant Physiol. 1992 Jan;98(1):34–38. doi: 10.1104/pp.98.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iglesias A., Satter R. L. H fluxes in excised samanea motor tissue : I. Promotion by light. Plant Physiol. 1983 Jun;72(2):564–569. doi: 10.1104/pp.72.2.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee Y., Satter R. L. H Uptake and Release during Circadian Rhythmic Movements of Excised Samanea Motor Organs : Effects of Mannitol, Sorbitol, and External pH. Plant Physiol. 1987 Apr;83(4):856–862. doi: 10.1104/pp.83.4.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Palmgren M. G., Christensen G. Functional comparisons between plant plasma membrane H(+)-ATPase isoforms expressed in yeast. J Biol Chem. 1994 Jan 28;269(4):3027–3033. [PubMed] [Google Scholar]
  10. Satter R. L., Schrempf M., Chaudhri J., Galston A. W. Phytochrome and Circadian Clocks in Samanea: Rhythmic Redistribution of Potassium and Chloride within the Pulvinus during Long Dark Periods. Plant Physiol. 1977 Feb;59(2):231–235. doi: 10.1104/pp.59.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schrempf M., Satter R. L., Galston A. W. Potassium-linked Chloride Fluxes during Rhythmic Leaf Movement of Albizzia julibrissin. Plant Physiol. 1976 Aug;58(2):190–192. doi: 10.1104/pp.58.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Toriyama H., Jaffe M. J. Migration of Calcium and Its Role in the Regulation of Seismonasty in the Motor Cell of Mimosa pudica L. Plant Physiol. 1972 Jan;49(1):72–81. doi: 10.1104/pp.49.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zurzolo C., Rodriguez-Boulan E. Delivery of Na+,K(+)-ATPase in polarized epithelial cells. Science. 1993 Apr 23;260(5107):550–556. doi: 10.1126/science.8386394. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES