Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):787–794. doi: 10.1104/pp.113.3.787

Composition of photosystem II antenna in light-harvesting complex II antisense tobacco plants at varying irradiances.

R Flachmann 1
PMCID: PMC158197  PMID: 9085572

Abstract

Plants with genes coding for chlorophyll a/b-binding proteins of light-harvesting complex II (LHCII) in antisense orientation (Lhcb) that are characterized by severely reduced Lhcb transcript levels (below 10% of wild type) do not show a bleached phenotype due to a specific loss of the polypeptide. To produce such a phenotype, a conceptually different antisense approach was tested with a dual-functional transcript encoding the gene for hygromycin phosphotransferase and the transit sequence of Lhcb1-2 in the antisense orientation. Using increasing concentrations of hygromycin, transformants with Lhcb steady-state levels as low as 9% of wild type were regenerated and grown in a growth chamber. Together with Lhcb antisense plants obtained in an earlier study, these antisense plants were analyzed biochemically for their photosystem II (PSII) antenna composition under varying light conditions. All antisense plants showed a characteristic low-irradiance-induced increase of their PSII antenna size as determined by higher chlorophyll concentrations, an increased content of LHCII, and a constant chlorophyll b-to-lutein ratio in comparison with control plants. One to 5% of the total Lhcb transcript amount was sufficient to allow unrestricted formation of the PSII antenna at low irradiance, suggesting that LHCH biogenesis is not controlled primarily by transcription.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Angenon G., Uotila J., Kurkela S. A., Teeri T. H., Botterman J., Van Montagu M., Depicker A. Expression of dicistronic transcriptional units in transgenic tobacco. Mol Cell Biol. 1989 Dec;9(12):5676–5684. doi: 10.1128/mcb.9.12.5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
  4. Bellemare G., Bartlett S. G., Chua N. H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem. 1982 Jul 10;257(13):7762–7767. [PubMed] [Google Scholar]
  5. Dreyfuss B. W., Thornber J. P. Assembly of the Light-Harvesting Complexes (LHCs) of Photosystem II (Monomeric LHC IIb Complexes Are Intermediates in the Formation of Oligomeric LHC IIb Complexes). Plant Physiol. 1994 Nov;106(3):829–839. doi: 10.1104/pp.106.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckenrode V. K., Arnold J., Meagher R. B. Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol. 1984;21(3):259–269. doi: 10.1007/BF02102358. [DOI] [PubMed] [Google Scholar]
  7. Eskins K., Duysen M. E., Olson L. Pigment analysis of chloroplast pigment-protein complexes in wheat. Plant Physiol. 1983 Apr;71(4):777–779. doi: 10.1104/pp.71.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Flachmann R., Kühlbrandt W. Accumulation of plant antenna complexes is regulated by post-transcriptional mechanisms in tobacco. Plant Cell. 1995 Feb;7(2):149–160. doi: 10.1105/tpc.7.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  11. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Maliga P., Sz-Breznovits A., Márton L. Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol. 1973 Jul 4;244(131):29–30. doi: 10.1038/newbio244029a0. [DOI] [PubMed] [Google Scholar]
  14. Matsushima T., Getz G. S., Meredith S. C. Primary structure of guinea pig apolipoprotein E. Nucleic Acids Res. 1990 Jan 11;18(1):202–202. doi: 10.1093/nar/18.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mullet J. E., Burke J. J., Arntzen C. J. A developmental study of photosystem I peripheral chlorophyll proteins. Plant Physiol. 1980 May;65(5):823–827. doi: 10.1104/pp.65.5.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palomares R., Herrmann R. G., Oelmuller R. Antisense RNA for components associated with the oxygen-evolving complex and the Rieske iron/sulfur protein of the tobacco thylakoid membrane suppresses accumulation of mRNA, but not of protein. Planta. 1993;190(3):305–312. doi: 10.1007/BF00196958. [DOI] [PubMed] [Google Scholar]
  17. Peter G. F., Thornber J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem. 1991 Sep 5;266(25):16745–16754. [PubMed] [Google Scholar]
  18. Pwee K. H., Gray J. C. The pea plastocyanin promoter directs cell-specific but not full light-regulated expression in transgenic tobacco plants. Plant J. 1993 Mar;3(3):437–449. doi: 10.1046/j.1365-313x.1993.t01-26-00999.x. [DOI] [PubMed] [Google Scholar]
  19. Riesselmann S., Piechulla B. Diurnal and Circadian Light-Harvesting Complex and Quinone B-Binding Protein Synthesis in Leaves of Tomato (Lycopersicon esculentum). Plant Physiol. 1992 Dec;100(4):1840–1845. doi: 10.1104/pp.100.4.1840. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES