Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):801–807. doi: 10.1104/pp.113.3.801

Immunological detection of potential signal-transduction proteins expressed during wheat somatic tissue culture.

A Nato 1, A Mirshahi 1, G Tichtinsky 1, M Mirshahi 1, J P Faure 1, D Lavergne 1, J De Buyser 1, C Jean 1, G Ducreux 1, Y Henry 1
PMCID: PMC158199  PMID: 9085574

Abstract

An immunochemical approach was used to detect the expression of putative guanine nucleotide-binding proteins (G-proteins), arrestin, and nucleoside diphosphate kinases during wheat (Triticum aestivum) tissue culture initiated from immature embryos. Both the soluble and membrane extracts from the immature embryos revealed bands of 58, 40, and 16 kD with antibodies to G-protein (alpha subunit), arrestin, and nucleoside diphosphate kinase, respectively. These proteins were overexpressed in vitro in both nonembryogenic callus and embryogenic cultures. An additional soluble protein (32 kD) was detected by anti-G alpha antibodies in cultured tissues but not in immature embryos, suggesting a possible function in cell multiplication. Moreover, somatic embryogenesis was associated with the appearance of a 29-kD protein reactive with anti-arrstin antibodies, both in soluble and membrane fractions. Tissue-cultured genetic stocks of Chinese Spring wheat, including the disomic, 36 ditelosomic, and 6 nullisomic-tetrasomic wheat lines, were used to ascertain the chromosomal location of the genes encoding the 29-kD arrestin-like protein. The lack of a signal with the nonembryogenic ditelosomic 3 D short chromosome arm line suggests that the 3 D long chromosome arm possesses at least one gene involved in the expression of the 29-kD protein. The putative role of the 29-kD protein in signal-transduction regulating embryogenesis is discussed.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ach R. A., Gruissem W. A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5863–5867. doi: 10.1073/pnas.91.13.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bominaar A. A., Molijn A. C., Pestel M., Veron M., Van Haastert P. J. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium. EMBO J. 1993 Jun;12(6):2275–2279. doi: 10.1002/j.1460-2075.1993.tb05881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
  4. Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craft C. M., Whitmore D. H. The arrestin superfamily: cone arrestins are a fourth family. FEBS Lett. 1995 Apr 3;362(2):247–255. doi: 10.1016/0014-5793(95)00213-s. [DOI] [PubMed] [Google Scholar]
  6. Dombrowski J. E., Raikhel N. V. Isolation of a cDNA encoding a novel GTP-binding protein of Arabidopsis thaliana. Plant Mol Biol. 1995 Sep;28(6):1121–1126. doi: 10.1007/BF00032672. [DOI] [PubMed] [Google Scholar]
  7. Drayer A. L., van Haastert P. J. Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes. Plant Mol Biol. 1994 Dec;26(5):1239–1270. doi: 10.1007/BF00016473. [DOI] [PubMed] [Google Scholar]
  8. Dubertret G., Mirshahi A., Mirshahi M., Gerard-Hirne C., Tremolieres A. Evidence from in vivo manipulations of lipid composition in mutants that the delta 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem. 1994 Dec 1;226(2):473–482. doi: 10.1111/j.1432-1033.1994.tb20072.x. [DOI] [PubMed] [Google Scholar]
  9. Dumas C., Lascu I., Moréra S., Glaser P., Fourme R., Wallet V., Lacombe M. L., Véron M., Janin J. X-ray structure of nucleoside diphosphate kinase. EMBO J. 1992 Sep;11(9):3203–3208. doi: 10.1002/j.1460-2075.1992.tb05397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Faure J. P., Mirshahi M., Dorey C., Thillaye B., de Kozak Y., Boucheix C. Production and specificity of monoclonal antibodies to retinal S antigen. Curr Eye Res. 1984 Jun;3(6):867–872. doi: 10.3109/02713688409000800. [DOI] [PubMed] [Google Scholar]
  11. Finan P. M., White I. R., Redpath S. H., Findlay J. B., Millner P. A. Molecular cloning, sequence determination and heterologous expression of nucleoside diphosphate kinase from Pisum sativum. Plant Mol Biol. 1994 Apr;25(1):59–67. doi: 10.1007/BF00024198. [DOI] [PubMed] [Google Scholar]
  12. Ishikawa A., Tsubouchi H., Iwasaki Y., Asahi T. Molecular cloning and characterization of a cDNA for the alpha subunit of a G protein from rice. Plant Cell Physiol. 1995 Mar;36(2):353–359. doi: 10.1093/oxfordjournals.pcp.a078767. [DOI] [PubMed] [Google Scholar]
  13. Jeansonne N. E., Jazwinski S. M., Donoso L. A. A 48-kDa, S-antigen-like phosphoprotein in yeast DNA-replicative complex preparations. J Biol Chem. 1991 Aug 5;266(22):14675–14680. [PubMed] [Google Scholar]
  14. Kim W. Y., Cheong N. E., Lee D. C., Je D. Y., Bahk J. D., Cho M. J., Lee S. Y. Cloning and sequencing analysis of a full-length cDNA encoding a G protein alpha subunit, SGA1, from soybean. Plant Physiol. 1995 Jul;108(3):1315–1316. doi: 10.1104/pp.108.3.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimura N., Shimada N. Evidence for complex formation between GTP binding protein(Gs) and membrane-associated nucleoside diphosphate kinase. Biochem Biophys Res Commun. 1990 Apr 16;168(1):99–106. doi: 10.1016/0006-291x(90)91680-q. [DOI] [PubMed] [Google Scholar]
  16. Kühn H. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry. 1978 Oct 17;17(21):4389–4395. doi: 10.1021/bi00614a006. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lefkowitz R. J. G protein-coupled receptor kinases. Cell. 1993 Aug 13;74(3):409–412. doi: 10.1016/0092-8674(93)80042-d. [DOI] [PubMed] [Google Scholar]
  19. Legendre L., Heinstein P. F., Low P. S. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem. 1992 Oct 5;267(28):20140–20147. [PubMed] [Google Scholar]
  20. Li W., Assmann S. M. Characterization of a G-protein-regulated outward K+ current in mesophyll cells of vicia faba L. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):262–266. doi: 10.1073/pnas.90.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lohse M. J., Benovic J. L., Codina J., Caron M. G., Lefkowitz R. J. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990 Jun 22;248(4962):1547–1550. doi: 10.1126/science.2163110. [DOI] [PubMed] [Google Scholar]
  22. Ma H., Yanofsky M. F., Huang H. Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein alpha subunit. Gene. 1991 Nov 15;107(2):189–195. doi: 10.1016/0378-1119(91)90318-6. [DOI] [PubMed] [Google Scholar]
  23. Ma H., Yanofsky M. F., Meyerowitz E. M. Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1990 May;87(10):3821–3825. doi: 10.1073/pnas.87.10.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsumoto H., Yamada T. Phosrestins I and II: arrestin homologs which undergo differential light-induced phosphorylation in the Drosophila photoreceptor in vivo. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1306–1312. doi: 10.1016/0006-291x(91)90683-x. [DOI] [PubMed] [Google Scholar]
  25. McNellis T. W., Deng X. W. Light control of seedling morphogenetic pattern. Plant Cell. 1995 Nov;7(11):1749–1761. doi: 10.1105/tpc.7.11.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Merkle T., Haizel T., Matsumoto T., Harter K., Dallmann G., Nagy F. Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J. 1994 Oct;6(4):555–565. doi: 10.1046/j.1365-313x.1994.6040555.x. [DOI] [PubMed] [Google Scholar]
  27. Mirshahi M., Borgese F., Razaghi A., Scheuring U., Garcia-Romeu F., Faure J. P., Motais R. Immunological detection of arrestin, a phototransduction regulatory protein, in the cytosol of nucleated erythrocytes. FEBS Lett. 1989 Dec 4;258(2):240–243. doi: 10.1016/0014-5793(89)81663-1. [DOI] [PubMed] [Google Scholar]
  28. Mirshahi M., Boucheix C., Collenot G., Thillaye B., Faure J. P. Retinal S-antigen epitopes in vertebrate and invertebrate photoreceptors. Invest Ophthalmol Vis Sci. 1985 Jul;26(7):1016–1021. [PubMed] [Google Scholar]
  29. Mirshahi M., Nato A., Razaghi A., Mirshahi A., Faure J. P. Présence de protéines apparentées à l'arrestine (antigène-S) dans des cellules végétales. C R Acad Sci III. 1991;312(9):441–448. [PubMed] [Google Scholar]
  30. Moisyadi S., Dharmasiri S., Harrington H. M., Lukas T. J. Characterization of a low molecular mass autophosphorylating protein in cultured sugarcane cells and its identification as a nucleoside diphosphate kinase. Plant Physiol. 1994 Apr;104(4):1401–1409. doi: 10.1104/pp.104.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nomura T., Yatsunami K., Honda A., Sugimoto Y., Fukui T., Zhang J., Yamamoto J., Ichikawa A. The amino acid sequence of nucleoside diphosphate kinase I from spinach leaves, as deduced from the cDNA sequence. Arch Biochem Biophys. 1992 Aug 15;297(1):42–45. doi: 10.1016/0003-9861(92)90638-d. [DOI] [PubMed] [Google Scholar]
  32. Palczewski K., Buczylko J., Ohguro H., Annan R. S., Carr S. A., Crabb J. W., Kaplan M. W., Johnson R. S., Walsh K. A. Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Protein Sci. 1994 Feb;3(2):314–324. doi: 10.1002/pro.5560030215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palczewski K. Structure and functions of arrestins. Protein Sci. 1994 Sep;3(9):1355–1361. doi: 10.1002/pro.5560030901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paquereau L., Audigier Y. GTP-binding proteins and early embryogenesis in Xenopus. Cell Signal. 1995 May;7(4):295–302. doi: 10.1016/0898-6568(95)00004-9. [DOI] [PubMed] [Google Scholar]
  35. Pelech S. L. Networking with protein kinases. Curr Biol. 1993 Aug 1;3(8):513–515. doi: 10.1016/0960-9822(93)90043-n. [DOI] [PubMed] [Google Scholar]
  36. Presecan E., Vonica A., Lascu I. Nucleoside diphosphate kinase from human erythrocytes: purification, molecular mass and subunit structure. FEBS Lett. 1989 Jul 3;250(2):629–632. doi: 10.1016/0014-5793(89)80811-7. [DOI] [PubMed] [Google Scholar]
  37. Rens-Domiano S., Hamm H. E. Structural and functional relationships of heterotrimeric G-proteins. FASEB J. 1995 Aug;9(11):1059–1066. doi: 10.1096/fasebj.9.11.7649405. [DOI] [PubMed] [Google Scholar]
  38. Saalbach G., Christov V. Sequence of a plant cDNA from Vicia faba encoding a novel Ran-related GTP-binding protein. Plant Mol Biol. 1994 Mar;24(6):969–972. doi: 10.1007/BF00014451. [DOI] [PubMed] [Google Scholar]
  39. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  40. Seo H. S., Kim H. Y., Jeong J. Y., Lee S. Y., Cho M. J., Bahk J. D. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36). Plant Mol Biol. 1995 Mar;27(6):1119–1131. doi: 10.1007/BF00020885. [DOI] [PubMed] [Google Scholar]
  41. Wallet V., Mutzel R., Troll H., Barzu O., Wurster B., Veron M., Lacombe M. L. Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J Natl Cancer Inst. 1990 Jul 18;82(14):1199–1202. doi: 10.1093/jnci/82.14.1199. [DOI] [PubMed] [Google Scholar]
  42. Weiss C. A., Huang H., Ma H. Immunolocalization of the G protein alpha subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell. 1993 Nov;5(11):1513–1528. doi: 10.1105/tpc.5.11.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yano A., Umeda M., Uchimiya H. Expression of functional proteins of cDNA encoding rice nucleoside diphosphate kinase (NDK) in Escherichia coli and organ-related alteration of NDK activities during rice seed germination (Oryza sativa L.). Plant Mol Biol. 1995 Mar;27(5):1053–1058. doi: 10.1007/BF00037032. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES