Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):817–824. doi: 10.1104/pp.113.3.817

Enhanced Employment of the Xanthophyll Cycle and Thermal Energy Dissipation in Spinach Exposed to High Light and N Stress.

A S Verhoeven 1, B Demmig-Adams 1, W W Adams III 1
PMCID: PMC158201  PMID: 12223645

Abstract

The involvement of the xanthophyll cycle in photoprotection of N-deficient spinach (Spinacia oleracea L. cv Nobel) was investigated. Spinach plants were fertilized with 14 mM nitrate (control, high N) versus 0.5 mM (low N) fertilizer, and grown under both high- and low-light conditions. Plants were characterized from measurements of photosynthetic oxygen exchange and chlorophyll fluorescence, as well as carotenoid and cholorophyll analysis. Compared with the high-N plants, the low-N plants showed a lower capacity for photosynthesis and a lower chlorophyll content, as well as a lower rate of photosystem II photosynthetic electron transport and a corresponding increase in thermal energy dissipation activity measured as nonphotochemical fluorescence quenching. The low-N plants displayed a greater fraction of the total xanthophyll cycle pool as zeaxanthin and antheraxanthin at midday, and an increase in the ratio of xanthophyll cycle pigments to total chlorophyll. These results indicate that under N limitation both the light-collecting system and the photosynthetic rate decrease. However, the increased dissipation of excess energy shows that there is excess light absorbed at midday. We conclude that spinach responds to N limitation by a combination of decreased light collection and increased thermal dissipation involving the xanthophyll cycle.

Full Text

The Full Text of this article is available as a PDF (797.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Demmig-Adams B., Adams W. W., Heber U., Neimanis S., Winter K., Krüger A., Czygan F. C., Bilger W., Björkman O. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol. 1990 Feb;92(2):293–301. doi: 10.1104/pp.92.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Demmig B., Winter K., Krüger A., Czygan F. C. Zeaxanthin and the Heat Dissipation of Excess Light Energy in Nerium oleander Exposed to a Combination of High Light and Water Stress. Plant Physiol. 1988 May;87(1):17–24. doi: 10.1104/pp.87.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Horton P., Ruban A. V., Walters R. G. REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):655–684. doi: 10.1146/annurev.arplant.47.1.655. [DOI] [PubMed] [Google Scholar]
  4. Khamis S., Lamaze T., Lemoine Y., Foyer C. Adaptation of the Photosynthetic Apparatus in Maize Leaves as a Result of Nitrogen Limitation : Relationships between Electron Transport and Carbon Assimilation. Plant Physiol. 1990 Nov;94(3):1436–1443. doi: 10.1104/pp.94.3.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kitajima M., Butler W. L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta. 1975 Jan 31;376(1):105–115. doi: 10.1016/0005-2728(75)90209-1. [DOI] [PubMed] [Google Scholar]
  6. Morales F., Abadía A., Abadía J. Characterization of the Xanthophyll Cycle and Other Photosynthetic Pigment Changes Induced by Iron Deficiency in Sugar Beet (Beta vulgaris L.). Plant Physiol. 1990 Oct;94(2):607–613. doi: 10.1104/pp.94.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sage R. F., Pearcy R. W. The Nitrogen Use Efficiency of C(3) and C(4) Plants: II. Leaf Nitrogen Effects on the Gas Exchange Characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol. 1987 Jul;84(3):959–963. doi: 10.1104/pp.84.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sugiharto B., Miyata K., Nakamoto H., Sasakawa H., Sugiyama T. Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Plant Physiol. 1990 Apr;92(4):963–969. doi: 10.1104/pp.92.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES