Abstract
Nitrate increases the transcription of the two Arabidopsis thaliana nitrate reductase genes. We demonstrated previously that 238 and 330 bp of the 5' flanking regions, designated as NP1 and NP2, of the two nitrate reductase genes NR1 and NR2, respectively, are sufficient for nitrate-dependent transcription (Y. Lin, C.-F. Hwang, J.B. Brown, C.-L. Cheng [1994] Plant Physiol 106: 477-484). Here we identify the cis-acting elements of NP1 and NP2 that are necessary for nitrate-dependent transcription by linker-scanning (LS) analysis. In transgenic plants one LS mutant of NP1 and two LS mutants of NP2 exhibited significantly lower nitrate-induced reporter gene chloramphenicol acetyltransferase activity. To distinguish which of these three mutants lost nitrate inducibility, competitive reverse-transcriptase polymerase chain reaction was used to measure the chloramphenicol acetyltransferase mRNA levels before and after nitrate induction. The single LS mutant in NP1 lost its response to nitrate, whereas the two LS mutants in NP2 partially lost their response to nitrate. A 12-bp sequence is conserved between the NP1 site and the two NP2 sites. This sequence motif is also conserved in the 5' flanking regions of other nitrate-inducible plant genes. Gel mobility shift experiments indicate that these three regions bind to similar proteins. The binding is constitutive with respect to nitrate treatment and was observed in both nonphotosynthetic suspension cells and green leaves.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An G. High efficiency transformation of cultured tobacco cells. Plant Physiol. 1985 Oct;79(2):568–570. doi: 10.1104/pp.79.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Back E., Dunne W., Schneiderbauer A., de Framond A., Rastogi R., Rothstein S. J. Isolation of the spinach nitrite reductase gene promoter which confers nitrate inducibility on GUS gene expression in transgenic tobacco. Plant Mol Biol. 1991 Jul;17(1):9–18. doi: 10.1007/BF00036801. [DOI] [PubMed] [Google Scholar]
- Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng C. L., Acedo G. N., Dewdney J., Goodman H. M., Conkling M. A. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 1991 May;96(1):275–279. doi: 10.1104/pp.96.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi H. K., Kleinhofs A., An G. H. Nucleotide sequence of rice nitrate reductase genes. Plant Mol Biol. 1989 Dec;13(6):731–733. doi: 10.1007/BF00016030. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Company M., Adler C., Errede B. Identification of a Ty1 regulatory sequence responsive to STE7 and STE12. Mol Cell Biol. 1988 Jun;8(6):2545–2554. doi: 10.1128/mcb.8.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conley T. R., Park S. C., Kwon H. B., Peng H. P., Shih M. C. Characterization of cis-acting elements in light regulation of the nuclear gene encoding the A subunit of chloroplast isozymes of glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. Mol Cell Biol. 1994 Apr;14(4):2525–2533. doi: 10.1128/mcb.14.4.2525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel-Vedele F., Dorbe M. F., Caboche M., Rouzé P. Cloning and analysis of the tomato nitrate reductase-encoding gene: protein domain structure and amino acid homologies in higher plants. Gene. 1989 Dec 28;85(2):371–380. doi: 10.1016/0378-1119(89)90430-7. [DOI] [PubMed] [Google Scholar]
- Gowri G., Campbell W. H. cDNA Clones for Corn Leaf NADH:Nitrate Reductase and Chloroplast NAD(P):Glyceraldehyde-3-Phosphate Dehydrogenase : Characterization of the Clones and Analysis of the Expression of the Genes in Leaves as Influenced by Nitrate in the Light and Dark. Plant Physiol. 1989 Jul;90(3):792–798. doi: 10.1104/pp.90.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green P. J., Kay S. A., Chua N. H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 1987 Sep;6(9):2543–2549. doi: 10.1002/j.1460-2075.1987.tb02542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall G., Jr, Allen G. C., Loer D. S., Thompson W. F., Spiker S. Nuclear scaffolds and scaffold-attachment regions in higher plants. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9320–9324. doi: 10.1073/pnas.88.20.9320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakobsen B. K., Pelham H. R. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol. 1988 Nov;8(11):5040–5042. doi: 10.1128/mcb.8.11.5040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y., Hwang C. F., Brown J. B., Cheng C. L. 5' proximal regions of Arabidopsis nitrate reductase genes direct nitrate-induced transcription in transgenic tobacco. Plant Physiol. 1994 Oct;106(2):477–484. doi: 10.1104/pp.106.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
- Lutz C. T., Hollifield W. C., Seed B., Davie J. M., Huang H. V. Syrinx 2A: an improved lambda phage vector designed for screening DNA libraries by recombination in vivo. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4379–4383. doi: 10.1073/pnas.84.13.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mindich L., Cohen J., Weisburd M. Isolation of nonsense suppressor mutants in Pseudomonas. J Bacteriol. 1976 Apr;126(1):177–182. doi: 10.1128/jb.126.1.177-182.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salanoubat M., Bui Dang Ha D. Analysis of the petunia nitrate reductase apoenzyme-encoding gene: a first step for sequence modification analysis. Gene. 1993 Jun 30;128(2):147–154. doi: 10.1016/0378-1119(93)90557-j. [DOI] [PubMed] [Google Scholar]
- Sander L., Jensen P. E., Back L. F., Stummann B. M., Henningsen K. W. Structure and expression of a nitrite reductase gene from bean (Phaseolus vulgaris) and promoter analysis in transgenic tobacco. Plant Mol Biol. 1995 Jan;27(1):165–177. doi: 10.1007/BF00019188. [DOI] [PubMed] [Google Scholar]
- Siebert P. D., Larrick J. W. Competitive PCR. Nature. 1992 Oct 8;359(6395):557–558. doi: 10.1038/359557a0. [DOI] [PubMed] [Google Scholar]
- Smith T. F., Waterman M. S., Sadler J. R. Statistical characterization of nucleic acid sequence functional domains. Nucleic Acids Res. 1983 Apr 11;11(7):2205–2220. doi: 10.1093/nar/11.7.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka T., Ida S., Irifune K., Oeda K., Morikawa H. Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Seq. 1994;5(1):57–61. doi: 10.3109/10425179409039705. [DOI] [PubMed] [Google Scholar]
- Vaucheret H., Marion-Poll A., Meyer C., Faure J. D., Marin E., Caboche M. Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol Gen Genet. 1992 Nov;235(2-3):259–268. doi: 10.1007/BF00279369. [DOI] [PubMed] [Google Scholar]
