Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Mar;113(3):903–911. doi: 10.1104/pp.113.3.903

The Regulation of Electron Partitioning between the Cytochrome and Alternative Pathways in Soybean Cotyledon and Root Mitochondria.

M Ribas-Carbo 1, A M Lennon 1, S A Robinson 1, L Giles 1, J A Berry 1, J N Siedow 1
PMCID: PMC158210  PMID: 12223652

Abstract

The regulation of electron partitioning between the cytochrome (Cyt) and alternative pathways in soybean (Glycine max L. cv Ransom) mitochondria in the absence of added inhibitors has been studied using the oxygen isotope fractionation technique. This regulation can depend on several factors, including the amount of alternative oxidase protein, the redox status of the alternative oxidase regulatory sulfhydryl-disulfide system, the degree of activation by [alpha]-keto acids, and the concentration and redox state of the ubiquinone pool. We studied electron partitioning onto the alternative pathway in mitochondria isolated from etiolated and light-grown cotyledons and roots to ascertain how these factors interact in different tissues. In light-grown cotyledon mitochondria there is some partitioning to the alternative pathway in state 4, which is increased dramatically by either pyruvate or dithiothreitol. In etiolated cotyledon mitochondria, the alternative pathway shows little ability to compete for electrons with the Cyt pathway under any circumstances. In root mitochondria, control of alternative pathway activity is exercised by both the ubiquinone pool and the regulatory sulfhydryl-disulfide system. In addition, oxygen isotope fractionation by the Cyt and alternative pathways in mitochondria were identical to the fractionation for the respective pathways seen in intact tissue, suggesting that residual respiration is not present in the absence of inhibitors.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr J. T., Bonner W. D., Jr Cyanide-insensitive respiration. II. Control of the alternate pathway. J Biol Chem. 1973 May 25;248(10):3446–3450. [PubMed] [Google Scholar]
  2. Bloom A. J., Caldwell R. M. Root excision decreases nutrient absorption and gas fluxes. Plant Physiol. 1988 Aug;87(4):794–796. doi: 10.1104/pp.87.4.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Day D. A., Krab K., Lambers H., Moore A. L., Siedow J. N., Wagner A. M., Wiskich J. T. The Cyanide-Resistant Oxidase: To Inhibit or Not to Inhibit, That Is the Question. Plant Physiol. 1996 Jan;110(1):1–2. doi: 10.1104/pp.110.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dry I. B., Moore A. L., Day D. A., Wiskich J. T. Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys. 1989 Aug 15;273(1):148–157. doi: 10.1016/0003-9861(89)90173-2. [DOI] [PubMed] [Google Scholar]
  5. Elthon T. E., McIntosh L. Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8399–8403. doi: 10.1073/pnas.84.23.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoefnagel M. H., Millar A. H., Wiskich J. T., Day D. A. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch Biochem Biophys. 1995 Apr 20;318(2):394–400. doi: 10.1006/abbi.1995.1245. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Millar A. H., Hoefnagel MHN., Day D. A., Wiskich J. T. Specificity of the Organic Acid Activation of Alternative Oxidase in Plant Mitochondria. Plant Physiol. 1996 Jun;111(2):613–618. doi: 10.1104/pp.111.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Millar A. H., Wiskich J. T., Whelan J., Day D. A. Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 1993 Aug 30;329(3):259–262. doi: 10.1016/0014-5793(93)80233-k. [DOI] [PubMed] [Google Scholar]
  10. Moore A. L., Bonner W. D., Jr, Rich P. R. The determination of the proton-motive force during cyanide-insensitive respiration in plant mitochondria. Arch Biochem Biophys. 1978 Mar;186(2):298–306. doi: 10.1016/0003-9861(78)90439-3. [DOI] [PubMed] [Google Scholar]
  11. Moore A. L., Siedow J. N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta. 1991 Aug 23;1059(2):121–140. doi: 10.1016/s0005-2728(05)80197-5. [DOI] [PubMed] [Google Scholar]
  12. Ribas-Carbo M., Berry J. A., Yakir D., Giles L., Robinson S. A., Lennon A. M., Siedow J. N. Electron Partitioning between the Cytochrome and Alternative Pathways in Plant Mitochondria. Plant Physiol. 1995 Nov;109(3):829–837. doi: 10.1104/pp.109.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson S. A., Yakir D., Ribas-Carbo M., Giles L., Osmond C. B., Siedow J. N., Berry J. A. Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination. Plant Physiol. 1992 Nov;100(3):1087–1091. doi: 10.1104/pp.100.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Siedow J. N., Umbach A. L. Plant Mitochondrial Electron Transfer and Molecular Biology. Plant Cell. 1995 Jul;7(7):821–831. doi: 10.1105/tpc.7.7.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Theologis A., Laties G. G. Relative Contribution of Cytochrome-mediated and Cyanide-resistant Electron Transport in Fresh and Aged Potato Slices. Plant Physiol. 1978 Aug;62(2):232–237. doi: 10.1104/pp.62.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Umbach A. L., Wiskich J. T., Siedow J. N. Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett. 1994 Jul 11;348(2):181–184. doi: 10.1016/0014-5793(94)00600-8. [DOI] [PubMed] [Google Scholar]
  19. Vanlerberghe G. C., Day D. A., Wiskich J. T., Vanlerberghe A. E., McIntosh L. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). Plant Physiol. 1995 Oct;109(2):353–361. doi: 10.1104/pp.109.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whelan J., Millar A. H., Day D. A. The alternative oxidase is encoded in a multigene family in soybean. Planta. 1996;198(2):197–201. doi: 10.1007/BF00206244. [DOI] [PubMed] [Google Scholar]
  21. Wilson S. B. The switching of electron flux from the cyanide-insensitive oxidase to the cytochrome pathway in mung-bean (Phaseolus aureus L.) mitochondria. Biochem J. 1988 Jan 1;249(1):301–303. doi: 10.1042/bj2490301. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES