Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1113–1124. doi: 10.1104/pp.113.4.1113

Restriction of Chlorophyll Synthesis Due to Expression of Glutamate 1-Semialdehyde Aminotransferase Antisense RNA Does Not Reduce the Light-Harvesting Antenna Size in Tobacco.

H Hartel 1, E Kruse 1, B Grimm 1
PMCID: PMC158234  PMID: 12223663

Abstract

The formation of 5-aminolevulinate is a key regulatory step in tetrapyrrole biosynthesis. In higher plants, glutamate 1-semialdehyde aminotransferase (GSA-AT) catalyzes the last step in the sequential conversion of glutamate to 5-aminolevulinate. Antisense RNA synthesis for GSA-AT leads to reduced GSA-AT protein levels in tobacco (Nicotiana tabacum L.) plants. We have used these transgenic plants for studying the significance of chlorophyll (Chl) availability for assembly of the light-harvesting apparatus. To avoid interfering photoinhibitory stress, plants were cultivated under a low photon flux density of 70 [mu]mol photons m-2 s-1. Decreased GSA-AT expression does not seem to suppress other enzymic steps in the Chl pathway, indicating that reduced Chl content in transgenic plants (down to 12% of the wild-type level) is a consequence of reduced GSA-AT activity. Chl deficiency correlated with a drastic reduction in the number of photosystem I and photosystem II reaction centers and their surrounding antenna on a leaf area basis. Different lines of evidence from the transgenic plants indicate that complete assembly of light-harvesting pigment-protein complexes is given preference over synthesis of new reaction center/core complexes, resulting in fully assembled photosynthetic units with no reduction in antenna size. Photosynthetic oxygen evolution rates and in vivo Chl fluorescence showed that GSA-AT antisense plants are photochemically competent. Thus, we suggest that under the growth conditions chosen during this study, plants tend to maintain their light-harvesting antenna size even under limited Chl supply.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen K. D., Staehelin L. A. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal Biochem. 1991 Apr;194(1):214–222. doi: 10.1016/0003-2697(91)90170-x. [DOI] [PubMed] [Google Scholar]
  2. Anandan S., Morishige D. T., Thornber J. P. Light-induced biogenesis of light-harvesting complex I (LHC I) during chloroplast development in barley (hordeum vulgare). Studies using cDNA clones of the 21- and 20-kilodalton LHC I apoproteins. Plant Physiol. 1993 Jan;101(1):227–236. doi: 10.1104/pp.101.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Argyroudi-Akoyunoglou J. H., Akoyunoglou A., Kalosakas K., Akoyunoglou G. Reorganization of the Photosystem II Unit in Developing Thylakoids of Higher Plants after Transfer to Darkness : Changes in Chlorophyll b, Light-Harvesting Chlorophyll Protein Content, and Grana Stacking. Plant Physiol. 1982 Nov;70(5):1242–1248. doi: 10.1104/pp.70.5.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bougri O., Grimm B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J. 1996 Jun;9(6):867–878. doi: 10.1046/j.1365-313x.1996.9060867.x. [DOI] [PubMed] [Google Scholar]
  5. Camm E. L., Green B. R. The effects of cations and trypsin on extraction of chlorophyll-protein complexes by octyl glucoside. Arch Biochem Biophys. 1982 Apr 1;214(2):563–572. doi: 10.1016/0003-9861(82)90061-3. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Dreyfuss B. W., Thornber J. P. Organization of the Light-Harvesting Complex of Photosystem I and Its Assembly during Plastid Development. Plant Physiol. 1994 Nov;106(3):841–848. doi: 10.1104/pp.106.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Falbel T. G., Staehelin L. A. Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol. 1994 Feb;104(2):639–648. doi: 10.1104/pp.104.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flachmann R., Kühlbrandt W. Accumulation of plant antenna complexes is regulated by post-transcriptional mechanisms in tobacco. Plant Cell. 1995 Feb;7(2):149–160. doi: 10.1105/tpc.7.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grimm B. Primary structure of a key enzyme in plant tetrapyrrole synthesis: glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4169–4173. doi: 10.1073/pnas.87.11.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartel H., Lokstein H., Grimm B., Rank B. Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to Nonphotochemical Chlorophyll Fluorescence Quenching). Plant Physiol. 1996 Feb;110(2):471–482. doi: 10.1104/pp.110.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. He Z. H., Li J., Sundqvist C., Timko M. P. Leaf Developmental Age Controls Expression of Genes Encoding Enzymes of Chlorophyll and Heme Biosynthesis in Pea (Pisum sativum L.). Plant Physiol. 1994 Oct;106(2):537–546. doi: 10.1104/pp.106.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herrin D. L., Battey J. F., Greer K., Schmidt G. W. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll. J Biol Chem. 1992 Apr 25;267(12):8260–8269. [PubMed] [Google Scholar]
  14. Hiyama T., Ke B. Difference spectra and extinction coefficients of P 700 . Biochim Biophys Acta. 1972 Apr 20;267(1):160–171. doi: 10.1016/0005-2728(72)90147-8. [DOI] [PubMed] [Google Scholar]
  15. Hoober J. K., Hughes M. J. Purification and Characterization of a Membrane-Bound Protease from Chlamydomonas reinhardtii. Plant Physiol. 1992 Jul;99(3):932–937. doi: 10.1104/pp.99.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Höfgen R., Axelsen K. B., Kannangara C. G., Schüttke I., Pohlenz H. D., Willmitzer L., Grimm B., von Wettstein D. A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1726–1730. doi: 10.1073/pnas.91.5.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  18. Kannangara C. G., Andersen R. V., Pontoppidan B., Willows R., von Wettstein D. Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolaevulinate. Ciba Found Symp. 1994;180:3–25. doi: 10.1002/9780470514535.ch2. [DOI] [PubMed] [Google Scholar]
  19. Kim J., Eichacker L. A., Rudiger W., Mullet J. E. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol. 1994 Mar;104(3):907–916. doi: 10.1104/pp.104.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klein R. R., Gamble P. E., Mullet J. E. Light-Dependent Accumulation of Radiolabeled Plastid-Encoded Chlorophyll a-Apoproteins Requires Chlorophyll a: I. Analysis of Chlorophyll-Deficient Mutants and Phytochrome Involvement. Plant Physiol. 1988 Dec;88(4):1246–1256. doi: 10.1104/pp.88.4.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kruse E., Mock H. P., Grimm B. Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J. 1995 Aug 1;14(15):3712–3720. doi: 10.1002/j.1460-2075.1995.tb00041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Król M., Spangfort M. D., Huner N. P., Oquist G., Gustafsson P., Jansson S. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol. 1995 Mar;107(3):873–883. doi: 10.1104/pp.107.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  24. Mathis J. N., Burkey K. O. Light intensity regulates the accumulation of the major light-harvesting chlorophyll-protein in greening seedlings. Plant Physiol. 1989 Jun;90(2):560–566. doi: 10.1104/pp.90.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okabe K., Schmid G. H., Straub J. Genetic characterization and high efficiency photosynthesis of an aurea mutant of tobacco. Plant Physiol. 1977 Jul;60(1):150–156. doi: 10.1104/pp.60.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Plumley F. G., Schmidt G. W. Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci U S A. 1987 Jan;84(1):146–150. doi: 10.1073/pnas.84.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Plumley G. F., Schmidt G. W. Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly. Plant Cell. 1995 Jun;7(6):689–704. doi: 10.1105/tpc.7.6.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Preiss S., Thornber J. P. Stability of the Apoproteins of Light-Harvesting Complex I and II during Biogenesis of Thylakoids in the Chlorophyll b-less Barley Mutant Chlorina f2. Plant Physiol. 1995 Mar;107(3):709–717. doi: 10.1104/pp.107.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sigrist M., Staehelin L. A. Appearance of type 1, 2, and 3 light-harvesting complex II and light-harvesting complex I proteins during light-induced greening of barley (Hordeum vulgare) etioplasts. Plant Physiol. 1994 Jan;104(1):135–145. doi: 10.1104/pp.104.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]
  31. Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES