Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1177–1183. doi: 10.1104/pp.113.4.1177

Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.

B Shen 1, R G Jensen 1, H J Bohnert 1
PMCID: PMC158240  PMID: 9112772

Abstract

To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 mumol/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals.

Full Text

The Full Text of this article is available as a PDF (770.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995 Apr;107(4):1049–1054. doi: 10.1104/pp.107.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babbs C. F., Steiner M. G. Detection and quantitation of hydroxyl radical using dimethyl sulfoxide as molecular probe. Methods Enzymol. 1990;186:137–147. doi: 10.1016/0076-6879(90)86103-3. [DOI] [PubMed] [Google Scholar]
  3. Bowler C., Slooten L., Vandenbranden S., De Rycke R., Botterman J., Sybesma C., Van Montagu M., Inzé D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991 Jul;10(7):1723–1732. doi: 10.1002/j.1460-2075.1991.tb07696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guerineau F., Woolston S., Brooks L., Mullineaux P. An expression cassette for targeting foreign proteins into chloroplasts. Nucleic Acids Res. 1988 Dec 9;16(23):11380–11380. doi: 10.1093/nar/16.23.11380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gupta A. S., Heinen J. L., Holaday A. S., Burke J. J., Allen R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Halliwell B., Grootveld M., Gutteridge J. M. Methods for the measurement of hydroxyl radicals in biomedical systems: deoxyribose degradation and aromatic hydroxylation. Methods Biochem Anal. 1988;33:59–90. doi: 10.1002/9780470110546.ch2. [DOI] [PubMed] [Google Scholar]
  7. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  8. Hanson A. D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M. O., Gage D. A. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):306–310. doi: 10.1073/pnas.91.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jensen R. G., Francki R. I., Zaitlin M. Metabolism of separated leaf cells: I. Preparation of photosynthetically active cells from tobacco. Plant Physiol. 1971 Jul;48(1):9–13. doi: 10.1104/pp.48.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kishor PBK., Hong Z., Miao G. H., Hu CAA., Verma DPS. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol. 1995 Aug;108(4):1387–1394. doi: 10.1104/pp.108.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
  12. McKersie B. D., Bowley S. R., Harjanto E., Leprince O. Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol. 1996 Aug;111(4):1177–1181. doi: 10.1104/pp.111.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nomura M., Ishitani M., Takabe T., Rai A. K., Takabe T. Synechococcus sp. PCC7942 Transformed with Escherichia coli bet Genes Produces Glycine Betaine from Choline and Acquires Resistance to Salt Stress. Plant Physiol. 1995 Mar;107(3):703–708. doi: 10.1104/pp.107.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pilon-Smits EAH., Ebskamp MJM., Paul M. J., Jeuken MJW., Weisbeek P. J., Smeekens SCM. Improved Performance of Transgenic Fructan-Accumulating Tobacco under Drought Stress. Plant Physiol. 1995 Jan;107(1):125–130. doi: 10.1104/pp.107.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tarczynski M. C., Jensen R. G., Bohnert H. J. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2600–2604. doi: 10.1073/pnas.89.7.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
  18. Whatley F. R., Ordin L., Arnon D. I. DISTRIBUTION OF MICRONUTRIENT METALS IN LEAVES AND CHLOROPLAST FRAGMENTS. Plant Physiol. 1951 Apr;26(2):414–418. doi: 10.1104/pp.26.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES