Abstract
The [epsilon] subunit of the chloroplast ATP synthase functions in part to prevent wasteful ATP hydrolysis by the enzyme. In addition, [epsilon] together with the remainder of the catalytic portion of the synthase (CF1) is required to block the nonproductive leak of protons through the membrane-embedded component of the synthase (CFO). Mutant [epsilon] subunits of the spinach (Spinacia oleracea) chloroplast ATP synthase that lack 5, 11, or 20 amino acids from their N termini ([epsilon]-[delta]5N, [epsilon]-[delta]11N, and [epsilon]-[delta]20N, respectively), were overexpressed as inclusion bodies. Using a procedure that resulted in the folding of full-length, recombinant [epsilon] in a biologically active form, none of these truncated forms resulted in [epsilon] that inhibited the ATPase activity of CF1 deficient in [epsilon], CF1(-[epsilon]). Yet, the [epsilon]-[delta]5N and [epsilon]-[delta]11N peptides significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO in NaBr-treated thylakoids. Although full-length [epsilon] rapidly inhibited the ATPase activity of CF1(-[epsilon]) in solution or bound to CFO, an extended period was required for the truncated forms to inhibit membrane-bound CF1(-[epsilon]). Despite the fact that [epsilon]-[delta]5N significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO, it did not block the proton conductance through CFO in NaBr-treated thylakoids reconstituted with CF1(-[epsilon]). Based on selective proteolysis and the binding of 8-anilino-1-naphthalene sulfonic acid, each of the truncated peptides gained significant secondary structure after folding. These results strongly suggest (a) that the N terminus of [epsilon] is important in its binding to CF1, (b) that CF0 stabilizes [epsilon] binding to the entire ATP synthase, and (c) that the N terminus may play some role in the regulation of proton flux through CFO.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Cruz J. A., Harfe B., Radkowski C. A., Dann M. S., McCarty R. E. Molecular dissection of the epsilon subunit of the chloroplast ATP synthase of spinach. Plant Physiol. 1995 Dec;109(4):1379–1388. doi: 10.1104/pp.109.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuki M., Noumi T., Maeda M., Amemura A., Futai M. Functional domains of epsilon subunit of Escherichia coli H+-ATPase (F0F1). J Biol Chem. 1988 Nov 25;263(33):17437–17442. [PubMed] [Google Scholar]
- McCarty R. E., Racker E. Effect of a coupling factor and its antiserum on photophosphorylation and hydrogen ion transport. Brookhaven Symp Biol. 1966;19:202–214. [PubMed] [Google Scholar]
- Richter M. L., Patrie W. J., McCarty R. E. Preparation of the epsilon subunit and epsilon subunit-deficient chloroplast coupling factor 1 in reconstitutively active forms. J Biol Chem. 1984 Jun 25;259(12):7371–7373. [PubMed] [Google Scholar]
- Richter M. L., Snyder B., McCarty R. E., Hammes G. G. Binding stoichiometry and structural mapping of the epsilon polypeptide of chloroplast coupling factor 1. Biochemistry. 1985 Oct 8;24(21):5755–5763. doi: 10.1021/bi00342a011. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
- Skakoon E. N., Dunn S. D. Orientation of the epsilon subunit in Escherichia coli ATP synthase. Arch Biochem Biophys. 1993 Apr;302(1):279–284. doi: 10.1006/abbi.1993.1211. [DOI] [PubMed] [Google Scholar]
- Soteropoulos P., Süss K. H., McCarty R. E. Modifications of the gamma subunit of chloroplast coupling factor 1 alter interactions with the inhibitory epsilon subunit. J Biol Chem. 1992 May 25;267(15):10348–10354. [PubMed] [Google Scholar]
- Sternweis P. C., Smith J. B. Characterization of the inhibitory (epsilon) subunit of the proton-translocating adenosine triphosphatase from Escherichia coli. Biochemistry. 1980 Feb 5;19(3):526–531. doi: 10.1021/bi00544a021. [DOI] [PubMed] [Google Scholar]
- Sternweis P. C. The epsilon subunit of Escherichia coli coupling factor 1 is required for its binding to the cytoplasmic membrane. J Biol Chem. 1978 May 10;253(9):3123–3128. [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- Wetzel C. M., McCarty R. E. Aspects of Subunit Interactions in the Chloroplast ATP Synthase (II. Characterization of a Chloroplast Coupling Factor 1-Subunit III Complex from Spinach Thylakoids). Plant Physiol. 1993 May;102(1):251–259. doi: 10.1104/pp.102.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkens S., Dahlquist F. W., McIntosh L. P., Donaldson L. W., Capaldi R. A. Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nat Struct Biol. 1995 Nov;2(11):961–967. doi: 10.1038/nsb1195-961. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Fillingame R. H. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c. J Biol Chem. 1995 Oct 13;270(41):24609–24614. [PubMed] [Google Scholar]
- Zurawski G., Bottomley W., Whitfeld P. R. Structures of the genes for the beta and epsilon subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6260–6264. doi: 10.1073/pnas.79.20.6260. [DOI] [PMC free article] [PubMed] [Google Scholar]