Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1193–1201. doi: 10.1104/pp.113.4.1193

N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants.

Y Gogorcena 1, A J Gordon 1, P R Escuredo 1, F R Minchin 1, J F Witty 1, J F Moran 1, M Becana 1
PMCID: PMC158242  PMID: 12223669

Abstract

Common beans (Phaseolus vulgaris L.) were exposed to continuous darkness to induce nodule senescence, and several nodule parameters were investigated to identify factors that may be involved in the initial loss of N2 fixation. After only 1 d of darkness, total root respiration decreased by 76% and in vivo nitrogenase (N2ase) activity decreased by 95%. This decline coincided with the almost complete depletion (97%) of sucrose and fructose in nodules. At this stage, the O2 concentration in the infected zone increased to 1%, which may be sufficient to inactivate N2ase; however, key enzymes of carbon and nitrogen metabolism were still active. After 2 d of dark stress there was a significant decrease in the level of N2ase proteins and in the activities of enzymes involved in carbon and nitrogen assimilation. However, the general collapse of nodule metabolism occurred only after 4 d of stress, with a large decline in leghemoglobin and antioxidants. At this final senescent stage, there was an accumulation of oxidatively modified proteins. This oxidative stress may have originated from the decrease in antioxidant defenses and from the Fe-catalyzed generation of activated oxygen due to the increased availability of catalytic Fe and O2 in the infected region.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Becana M., Klucas R. V. Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8958–8962. doi: 10.1073/pnas.89.19.8958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ching T. M., Hedtke S., Russell S. A., Evans H. J. Energy State and Dinitrogen Fixation in Soybean Nodules of Dark-grown Plants. Plant Physiol. 1975 Apr;55(4):796–798. doi: 10.1104/pp.55.4.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalton D. A., Baird L. M., Langeberg L., Taugher C. Y., Anyan W. R., Vance C. P., Sarath G. Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. Plant Physiol. 1993 Jun;102(2):481–489. doi: 10.1104/pp.102.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dalton D. A., Langeberg L., Robbins M. Purification and characterization of monodehydroascorbate reductase from soybean root nodules. Arch Biochem Biophys. 1992 Jan;292(1):281–286. doi: 10.1016/0003-9861(92)90080-g. [DOI] [PubMed] [Google Scholar]
  7. Draper H. H., Squires E. J., Mahmoodi H., Wu J., Agarwal S., Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993 Oct;15(4):353–363. doi: 10.1016/0891-5849(93)90035-s. [DOI] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Gogorcena Y., Iturbe-Ormaetxe I., Escuredo P. R., Becana M. Antioxidant Defenses against Activated Oxygen in Pea Nodules Subjected to Water Stress. Plant Physiol. 1995 Jun;108(2):753–759. doi: 10.1104/pp.108.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herholz K., Reulen H. J., von Stockhausen H. M., Thiel A., Ilmberger J., Kessler J., Eisner W., Yousry T. A., Heiss W. D. Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery. 1997 Dec;41(6):1253–1262. doi: 10.1097/00006123-199712000-00004. [DOI] [PubMed] [Google Scholar]
  11. LaRue T. A., Child J. J. Sensitive fluorometric assay for leghemoglobin. Anal Biochem. 1979 Jan 1;92(1):11–15. doi: 10.1016/0003-2697(79)90618-3. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
  14. Light D. R., Walsh C., Marletta M. A. Analytical and preparative high-performance liquid chromatography separation of flavin and flavin analog coenzymes. Anal Biochem. 1980 Nov 15;109(1):87–93. doi: 10.1016/0003-2697(80)90014-7. [DOI] [PubMed] [Google Scholar]
  15. Minotti G., Aust S. D. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem. 1987 Jan 25;262(3):1098–1104. [PubMed] [Google Scholar]
  16. Pfeiffer N. E., Malik N. S., Wagner F. W. Reversible dark-induced senescence of soybean root nodules. Plant Physiol. 1983 Feb;71(2):393–399. doi: 10.1104/pp.71.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sarath G., Pfeiffer N. E., Sodhi C. S., Wagner F. W. Bacteroids Are Stable during Dark-Induced Senescence of Soybean Root Nodules. Plant Physiol. 1986 Oct;82(2):346–350. doi: 10.1104/pp.82.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES