Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1233–1242. doi: 10.1104/pp.113.4.1233

P Metabolism in the Bean-Rhizobium tropici Symbiosis.

T S Al-Niemi 1, M L Kahn 1, T R McDermott 1
PMCID: PMC158246  PMID: 12223671

Abstract

Nodulated legumes require more P than legumes growing on mineral nitrogen, but little is known about the basis for the higher P requirement. Experiments were conducted to determine how Rhizobium tropici responds to P limitation and to understand how P is partitioned between the symbionts under conditions of adequate or limiting P. Free-living R. tropici responds to P stress by increasing P transport capacity and inducing both an acid and an alkaline phosphatase. This P-stress response occurs when the medium P concentration decreases below 1 [mu]M. Both P-stress-inducible phosphatases are found in bacteroids taken from plants growing with adequate P, suggesting that P levels in the symbiosome space is low enough to induce the expression of these enzymes. Bacteroid alkaline phosphatase-specific activity was highest during vegetative growth of the bean plant, but decreased approximately 75% during the host reproductive stages. In hydroponic experiments 32P-tracer studies showed that in vivo rates of P accumulation were significantly higher in bacteroids from P-limited plants compared with those from plants that had been supplied with adequate P. In contrast, label accumulation in leaves was greatest in plants grown with adequate P.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bal A. K., Shantharam S., Verma D. P. Changes in the outer cell wall of Rhizobium during development of root nodule symbiosis in soybean. Can J Microbiol. 1980 Sep;26(9):1096–1103. doi: 10.1139/m80-182. [DOI] [PubMed] [Google Scholar]
  3. Beck D. P., Munns D. N. Phosphate Nutrition of Rhizobium spp. Appl Environ Microbiol. 1984 Feb;47(2):278–282. doi: 10.1128/aem.47.2.278-282.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerdes R. G., Strickland K. P., Rosenberg H. Restoration of phosphate transport by the phosphate-binding protein in spheroplasts of Escherichia coli. J Bacteriol. 1977 Aug;131(2):512–518. doi: 10.1128/jb.131.2.512-518.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haviland R. T., Bieber L. L. Scintillation counting of 32P without added scintillator in aqueous solutions and organic solvents and on dry chromatographic media. Anal Biochem. 1970 Feb;33(2):323–334. doi: 10.1016/0003-2697(70)90303-9. [DOI] [PubMed] [Google Scholar]
  6. Israel D. W. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 1987 Jul;84(3):835–840. doi: 10.1104/pp.84.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karr D. B., Waters J. K., Suzuki F., Emerich D. W. Enzymes of the Poly-beta-Hydroxybutyrate and Citric Acid Cycles of Rhizobium japonicum Bacteroids. Plant Physiol. 1984 Aug;75(4):1158–1162. doi: 10.1104/pp.75.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mantis N. J., Winans S. C. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol. 1993 Oct;175(20):6626–6636. doi: 10.1128/jb.175.20.6626-6636.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McDermott T. R., Kahn M. L. Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene. J Bacteriol. 1992 Jul;174(14):4790–4797. doi: 10.1128/jb.174.14.4790-4797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McKay I. A., Djordjevic M. A. Production and Excretion of Nod Metabolites by Rhizobium leguminosarum bv. trifolii Are Disrupted by the Same Environmental Factors That Reduce Nodulation in the Field. Appl Environ Microbiol. 1993 Oct;59(10):3385–3392. doi: 10.1128/aem.59.10.3385-3392.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakata A., Amemura M., Yamaguchi M., Izutani K. Factors affecting the formation of alkaline phosphatase isozymes in Escherichia coli K-12. Biken J. 1977 Jun;20(2):47–55. [PubMed] [Google Scholar]
  12. Nakata A., Yamaguchi M., Izutani K., Amemura M. Escherichia coli mutants deficient in the production of alkaline phosphatase isozymes. J Bacteriol. 1978 Apr;134(1):287–294. doi: 10.1128/jb.134.1.287-294.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Piggot P. J., Sklar M. D., Gorini L. Ribosomal alterations controlling alkaline phosphatase isozymes in Escherichia coli. J Bacteriol. 1972 Apr;110(1):291–299. doi: 10.1128/jb.110.1.291-299.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Poole K., Hancock R. E. Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein. Eur J Biochem. 1984 Nov 2;144(3):607–612. doi: 10.1111/j.1432-1033.1984.tb08508.x. [DOI] [PubMed] [Google Scholar]
  15. Reibach P. H., Mask P. L., Streeter J. G. A rapid one-step method for the isolation of bacteroids from root nodules of soybean plants, utilizing self-generating Percoll gradients. Can J Microbiol. 1981 May;27(5):491–495. doi: 10.1139/m81-072. [DOI] [PubMed] [Google Scholar]
  16. Romanov V. I., Hernández-Lucas I., Martínez-Romero E. Carbon Metabolism Enzymes of Rhizobium tropici Cultures and Bacteroids. Appl Environ Microbiol. 1994 Jul;60(7):2339–2342. doi: 10.1128/aem.60.7.2339-2342.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Somerville J. E., Kahn M. L. Cloning of the glutamine synthetase I gene from Rhizobium meliloti. J Bacteriol. 1983 Oct;156(1):168–176. doi: 10.1128/jb.156.1.168-176.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wanner B. L. Gene regulation by phosphate in enteric bacteria. J Cell Biochem. 1993 Jan;51(1):47–54. doi: 10.1002/jcb.240510110. [DOI] [PubMed] [Google Scholar]
  19. Willsky G. R., Malamy M. H. Control of the synthesis of alkaline phosphatase and the phosphate-binding protein in Escherichia coli. J Bacteriol. 1976 Jul;127(1):595–609. doi: 10.1128/jb.127.1.595-609.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Winans S. C. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol. 1990 May;172(5):2433–2438. doi: 10.1128/jb.172.5.2433-2438.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wong P. P., Evans H. J. Poly-beta-hydroxybutyrate Utilization by Soybean (Glycine max Merr.) Nodules and Assessment of Its Role in Maintenance of Nitrogenase Activity. Plant Physiol. 1971 Jun;47(6):750–755. doi: 10.1104/pp.47.6.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zhan H. J., Lee C. C., Leigh J. A. Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol. 1991 Nov;173(22):7391–7394. doi: 10.1128/jb.173.22.7391-7394.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES