Abstract
Heat shock results in a coordinate loss of translational efficiency and an increase in mRNA stability in plants. The thermally mediated increase in mRNA half-life could be a result of decreased expression and/or regulation of intracellular RNase enzyme activity. We have examined the fate of both acidic and neutral RNases in wheat seedlings that were subjected to a thermal stress. We observed that the activity of all detectable RNases decreased following a heat shock, which was a function of both the temperature and length of the heat shock. In contrast, no reduction in nuclease activity was observed following any heat-shock treatment. Antibodies raised against one of the major RNases was used in western analysis to demonstrate that the RNase protein level did not decrease following a heat shock, and the data suggest that the observed decrease in RNase activity in heat-shocked leaves may be due to modification of the protein. Two-dimensional gel/western analysis of this RNase revealed three isoforms. The most acidic isoform predominated in control leaves, whereas the most basic isoform predominated in leaves following a heat shock and correlated with the heat-shock-induced reduction in RNase activity and increase in mRNA half-life. These data suggest that RNase activity may be regulated posttranslationally following heat shock as a means to reduce RNA turnover until recovery ensues.
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abernethy R. H., Thiel D. S., Petersen N. S., Helm K. Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol. 1989 Feb;89(2):569–576. doi: 10.1104/pp.89.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apuya N. R., Zimmerman J. L. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos. Plant Cell. 1992 Jun;4(6):657–665. doi: 10.1105/tpc.4.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arrigo A. P. Cellular localization of HSP23 during Drosophila development and following subsequent heat shock. Dev Biol. 1987 Jul;122(1):39–48. doi: 10.1016/0012-1606(87)90330-7. [DOI] [PubMed] [Google Scholar]
- Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brodl M. R., Ho T. H. Heat Shock Causes Selective Destabilization of Secretory Protein mRNAs in Barley Aleurone Cells. Plant Physiol. 1991 Aug;96(4):1048–1052. doi: 10.1104/pp.96.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown P. H., Ho T. H. Barley aleurone layers secrete a nuclease in response to gibberellic Acid : purification and partial characterization of the associated ribonuclease, deoxyribonuclease, and 3'-nucleotidase activities. Plant Physiol. 1986 Nov;82(3):801–806. doi: 10.1104/pp.82.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier N. C., Schlesinger M. J. The dynamic state of heat shock proteins in chicken embryo fibroblasts. J Cell Biol. 1986 Oct;103(4):1495–1507. doi: 10.1083/jcb.103.4.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compton M. M., Cidlowski J. A. Identification of a glucocorticoid-induced nuclease in thymocytes. A potential "lysis gene" product. J Biol Chem. 1987 Jun 15;262(17):8288–8292. [PubMed] [Google Scholar]
- Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
- Gallie D. R., Caldwell C., Pitto L. Heat Shock Disrupts Cap and Poly(A) Tail Function during Translation and Increases mRNA Stability of Introduced Reporter mRNA. Plant Physiol. 1995 Aug;108(4):1703–1713. doi: 10.1104/pp.108.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jost W., Bak H., Glund K., Terpstra P., Beintema J. J. Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur J Biochem. 1991 May 23;198(1):1–6. doi: 10.1111/j.1432-1033.1991.tb15978.x. [DOI] [PubMed] [Google Scholar]
- Leicht B. G., Biessmann H., Palter K. B., Bonner J. J. Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci U S A. 1986 Jan;83(1):90–94. doi: 10.1073/pnas.83.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin C. Y., Roberts J. K., Key J. L. Acquisition of Thermotolerance in Soybean Seedlings : Synthesis and Accumulation of Heat Shock Proteins and their Cellular Localization. Plant Physiol. 1984 Jan;74(1):152–160. doi: 10.1104/pp.74.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer J. E., Schweiger M. RNase III is positively regulated by T7 protein kinase. J Biol Chem. 1983 May 10;258(9):5340–5343. [PubMed] [Google Scholar]
- Newbigin E., Anderson M. A., Clarke A. E. Gametophytic Self-Incompatibility Systems. Plant Cell. 1993 Oct;5(10):1315–1324. doi: 10.1105/tpc.5.10.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nover L., Scharf K. D., Neumann D. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol. 1989 Mar;9(3):1298–1308. doi: 10.1128/mcb.9.3.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nover L., Scharf K. D., Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol. 1983 Sep;3(9):1648–1655. doi: 10.1128/mcb.3.9.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nürnberger T., Abel S., Jost W., Glund K. Induction of an Extracellular Ribonuclease in Cultured Tomato Cells upon Phosphate Starvation. Plant Physiol. 1990 Apr;92(4):970–976. doi: 10.1104/pp.92.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson E. S., Aggison L. A., Nicholson A. W. Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol Microbiol. 1994 Mar;11(6):1045–1057. doi: 10.1111/j.1365-2958.1994.tb00382.x. [DOI] [PubMed] [Google Scholar]
- Sorger P. K. Heat shock factor and the heat shock response. Cell. 1991 May 3;65(3):363–366. doi: 10.1016/0092-8674(91)90452-5. [DOI] [PubMed] [Google Scholar]
- Storti R. V., Scott M. P., Rich A., Pardue M. L. Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell. 1980 Dec;22(3):825–834. doi: 10.1016/0092-8674(80)90559-0. [DOI] [PubMed] [Google Scholar]
- Taylor C. B., Bariola P. A., delCardayré S. B., Raines R. T., Green P. J. RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5118–5122. doi: 10.1073/pnas.90.11.5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. M. Plant nucleases: biochemistry and development of multiple molecular forms. Isozymes Curr Top Biol Med Res. 1982;6:33–54. [PubMed] [Google Scholar]
- Yen Y., Green P. J. Identification and Properties of the Major Ribonucleases of Arabidopsis thaliana. Plant Physiol. 1991 Dec;97(4):1487–1493. doi: 10.1104/pp.97.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]