Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1329–1341. doi: 10.1104/pp.113.4.1329

Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis.

F J Turano 1, S S Thakkar 1, T Fang 1, J M Weisemann 1
PMCID: PMC158256  PMID: 9112779

Abstract

Two distinct cDNA clones encoding NAD(H)-dependent glutamate dehydrogenase (NAD[H]-GDH) in Arabidopsis thaliana were identified and sequenced. The genes corresponding to these cDNA clones were designated GDH1 and GDH2. Analysis of the deduced amino acid sequences suggest that both gene products contain putative mitochondrial transit polypeptides and NAD(H)- and alpha-ketoglutarate-binding domains. Subcellular fractionation confirmed the mitochondrial location of the NAD(H)-GDH isoenzymes. In addition, a putative EF-hand loop, shown to be associated with Ca2+ binding, was identified in the GDH2 gene product but not in the GDH1 gene product. GDH1 encodes a 43.0-kD polypeptide, designated alpha, and GDH2 encodes a 42.5-kD polypeptide, designated beta. The two subunits combine in different ratios to form seven NAD(H)-GDH isoenzymes. The slowest-migrating isoenzyme in a native gel, GDH1, is a homohexamer composed of alpha subunits, and the fastest-migrating isoenzyme, GDH7, is a homohexamer composed of beta subunits. GDH isoenzymes 2 through 6 are heterohexamers composed of different ratios of alpha and beta subunits. NAD(H)-GDH isoenzyme patterns varied among different plant organs and in leaves of plants irrigated with different nitrogen sources or subjected to darkness for 4 d. Conversely, there were little or no measurable changes in isoenzyme patterns in roots of plants treated with different nitrogen sources. In most instances, changes in isoenzyme patterns were correlated with relative differences in the level of alpha and beta subunits. Likewise, the relative difference in the level of alpha or beta subunits was correlated with changes in the level of GDH1 or GDH2 transcript detected in each sample, suggesting that NAD(H)-GDH activity is controlled at least in part at the transcriptional level.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. BRUINSMA J. A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta. 1961 Sep 30;52:576–578. doi: 10.1016/0006-3002(61)90418-8. [DOI] [PubMed] [Google Scholar]
  3. Britton K. L., Baker P. J., Rice D. W., Stillman T. J. Structural relationship between the hexameric and tetrameric family of glutamate dehydrogenases. Eur J Biochem. 1992 Nov 1;209(3):851–859. doi: 10.1111/j.1432-1033.1992.tb17357.x. [DOI] [PubMed] [Google Scholar]
  4. Chou K. H., Splittstoesser W. E. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes. Plant Physiol. 1972 Apr;49(4):550–554. doi: 10.1104/pp.49.4.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards J. W., Coruzzi G. M. Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell. 1989 Feb;1(2):241–248. doi: 10.1105/tpc.1.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garland W. J., Dennis D. T. Steady-state kinetics of glutamate dehydrogenase from Pisum sativum L. mitochondria. Arch Biochem Biophys. 1977 Aug;182(2):614–625. doi: 10.1016/0003-9861(77)90542-2. [DOI] [PubMed] [Google Scholar]
  7. Gavel Y., von Heijne G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990 Oct;4(1):33–37. doi: 10.1093/protein/4.1.33. [DOI] [PubMed] [Google Scholar]
  8. Goodman M. M., Stuber C. W., Newton K., Weissinger H. H. Linkage relationships of 19 enzyme Loci in maize. Genetics. 1980 Nov;96(3):697–710. doi: 10.1093/genetics/96.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haiech J., Sallantin J. Computer search of calcium binding sites in a gene data bank: use of learning techniques to build an expert system. Biochimie. 1985 May;67(5):555–560. doi: 10.1016/s0300-9084(85)80276-5. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lam H. M., Coschigano K., Schultz C., Melo-Oliveira R., Tjaden G., Oliveira I., Ngai N., Hsieh M. H., Coruzzi G. Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell. 1995 Jul;7(7):887–898. doi: 10.1105/tpc.7.7.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lam H. M., Peng S. S., Coruzzi G. M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1347–1357. doi: 10.1104/pp.106.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lea P. J., Miflin B. J. Alternative route for nitrogen assimilation in higher plants. Nature. 1974 Oct 18;251(5476):614–616. doi: 10.1038/251614a0. [DOI] [PubMed] [Google Scholar]
  14. Lilley K. S., Engel P. C. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate. Eur J Biochem. 1992 Jul 15;207(2):533–540. doi: 10.1111/j.1432-1033.1992.tb17079.x. [DOI] [PubMed] [Google Scholar]
  15. Loulakakis C. A., Roubelakis-Angelakis K. A. Immunocharacterization of NADH-Glutamate Dehydrogenase from Vitis vinifera L. Plant Physiol. 1990 Sep;94(1):109–113. doi: 10.1104/pp.94.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loulakakis K. A., Roubelakis-Angelakis K. A., Kanellis A. K. Regulation of Glutamate Dehydrogenase and Glutamine Synthetase in Avocado Fruit during Development and Ripening. Plant Physiol. 1994 Sep;106(1):217–222. doi: 10.1104/pp.106.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loulakakis K. A., Roubelakis-Angelakis K. A. Plant NAD(H)-Glutamate Dehydrogenase Consists of Two Subunit Polypeptides and Their Participation in the Seven Isoenzymes Occurs in an Ordered Ratio. Plant Physiol. 1991 Sep;97(1):104–111. doi: 10.1104/pp.97.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Melo-Oliveira R., Oliveira I. C., Coruzzi G. M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4718–4723. doi: 10.1073/pnas.93.10.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peterman T. K., Goodman H. M. The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet. 1991 Nov;230(1-2):145–154. doi: 10.1007/BF00290662. [DOI] [PubMed] [Google Scholar]
  21. Robinson S. A., Slade A. P., Fox G. G., Phillips R., Ratcliffe R. G., Stewart G. R. The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol. 1991 Feb;95(2):509–516. doi: 10.1104/pp.95.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sakakibara H., Fujii K., Sugiyama T. Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol. 1995 Jul;36(5):789–797. doi: 10.1093/oxfordjournals.pcp.a078823. [DOI] [PubMed] [Google Scholar]
  23. Schultz C. J., Coruzzi G. M. The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J. 1995 Jan;7(1):61–75. doi: 10.1046/j.1365-313x.1995.07010061.x. [DOI] [PubMed] [Google Scholar]
  24. Syntichaki K. M., Loulakakis K. A., Roubelakis-Angelakis K. A. The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene. 1996 Feb 2;168(1):87–92. doi: 10.1016/0378-1119(96)83097-6. [DOI] [PubMed] [Google Scholar]
  25. Turano F. J., Dashner R., Upadhyaya A., Caldwell C. R. Purification of Mitochondrial Glutamate Dehydrogenase from Dark-Grown Soybean Seedlings. Plant Physiol. 1996 Nov;112(3):1357–1364. doi: 10.1104/pp.112.3.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Turano F. J., Weisemann J. M., Matthews B. F. Identification and expression of a cDNA clone encoding aspartate aminotransferase in carrot. Plant Physiol. 1992 Sep;100(1):374–381. doi: 10.1104/pp.100.1.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wallsgrove R. M., Turner J. C., Hall N. P., Kendall A. C., Bright S. W. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol. 1987 Jan;83(1):155–158. doi: 10.1104/pp.83.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilkie S. E., Roper J. M., Smith A. G., Warren M. J. Isolation, characterisation and expression of a cDNA clone encoding plastid aspartate aminotransferase from Arabidopsis thaliana. Plant Mol Biol. 1995 Mar;27(6):1227–1233. doi: 10.1007/BF00020897. [DOI] [PubMed] [Google Scholar]
  29. Yamaya T., Oaks A., Matsumoto H. Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots. Plant Physiol. 1984 Dec;76(4):1009–1013. doi: 10.1104/pp.76.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamaya T., Oaks A., Rhodes D., Matsumoto H. Synthesis of [N]glutamate from [N]h(4) and [N]glycine by mitochondria isolated from pea and corn shoots. Plant Physiol. 1986 Jul;81(3):754–757. doi: 10.1104/pp.81.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. von Heijne G. Cleavage-site motifs in protein targeting sequences. Genet Eng (N Y) 1992;14:1–11. doi: 10.1007/978-1-4615-3424-2_1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES